|
|
import gradio as gr |
|
|
import os |
|
|
import time |
|
|
import sys |
|
|
import subprocess |
|
|
import tempfile |
|
|
import requests |
|
|
from urllib.parse import urlparse |
|
|
|
|
|
|
|
|
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True) |
|
|
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True) |
|
|
subprocess.run(["pip", "install", "yt-dlp"], check=True) |
|
|
|
|
|
|
|
|
sys.path.append("./faster-whisper") |
|
|
|
|
|
from faster_whisper import WhisperModel |
|
|
from faster_whisper.transcribe import BatchedInferencePipeline |
|
|
import yt_dlp |
|
|
|
|
|
def download_audio(url): |
|
|
parsed_url = urlparse(url) |
|
|
if parsed_url.netloc == 'www.youtube.com' or parsed_url.netloc == 'youtu.be': |
|
|
|
|
|
ydl_opts = { |
|
|
'format': 'bestaudio/best', |
|
|
'postprocessors': [{ |
|
|
'key': 'FFmpegExtractAudio', |
|
|
'preferredcodec': 'mp3', |
|
|
'preferredquality': '192', |
|
|
}], |
|
|
'outtmpl': '%(id)s.%(ext)s', |
|
|
} |
|
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
|
info = ydl.extract_info(url, download=True) |
|
|
return f"{info['id']}.mp3" |
|
|
else: |
|
|
|
|
|
response = requests.get(url) |
|
|
if response.status_code == 200: |
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: |
|
|
temp_file.write(response.content) |
|
|
return temp_file.name |
|
|
else: |
|
|
raise Exception(f"Failed to download audio from {url}") |
|
|
|
|
|
def transcribe_audio(input_source, batch_size): |
|
|
|
|
|
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8") |
|
|
batched_model = BatchedInferencePipeline(model=model) |
|
|
|
|
|
|
|
|
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')): |
|
|
|
|
|
audio_path = download_audio(input_source) |
|
|
else: |
|
|
|
|
|
audio_path = input_source |
|
|
|
|
|
|
|
|
start_time = time.time() |
|
|
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size) |
|
|
end_time = time.time() |
|
|
|
|
|
|
|
|
transcription = "" |
|
|
for segment in segments: |
|
|
transcription += f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n" |
|
|
|
|
|
|
|
|
transcription_time = end_time - start_time |
|
|
real_time_factor = info.duration / transcription_time |
|
|
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) |
|
|
|
|
|
|
|
|
output = f"Transcription:\n\n{transcription}\n" |
|
|
output += f"\nLanguage: {info.language}, Probability: {info.language_probability:.2f}\n" |
|
|
output += f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n" |
|
|
output += f"Transcription time: {transcription_time:.2f} seconds\n" |
|
|
output += f"Real-time factor: {real_time_factor:.2f}x\n" |
|
|
output += f"Audio file size: {audio_file_size:.2f} MB" |
|
|
|
|
|
|
|
|
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')): |
|
|
os.remove(audio_path) |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=transcribe_audio, |
|
|
inputs=[ |
|
|
gr.inputs.Textbox(label="Audio Source (Upload, MP3 URL, or YouTube URL)"), |
|
|
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size") |
|
|
], |
|
|
outputs=gr.Textbox(label="Transcription and Metrics"), |
|
|
title="Faster Whisper v3 turbo int8 transcription", |
|
|
description="Enter an audio file path, MP3 URL, or YouTube URL to transcribe using Faster Whisper v3 turbo (int8). Adjust the batch size for performance tuning.", |
|
|
examples=[ |
|
|
["https://www.youtube.com/watch?v=dQw4w9WgXcQ", 16], |
|
|
["https://example.com/path/to/audio.mp3", 16], |
|
|
["path/to/local/audio.mp3", 16] |
|
|
], |
|
|
) |
|
|
|
|
|
iface.launch() |