likhonsheikh's picture
Upload app.py with huggingface_hub
dffa5d7 verified
raw
history blame
14 kB
"""
Anthropic-Compatible API Endpoint
Lightweight CPU-based implementation for Hugging Face Spaces
"""
import os
import time
import uuid
import logging
from datetime import datetime
from logging.handlers import RotatingFileHandler
from typing import List, Optional, Union
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Header, Request
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import json
# ============== Logging Configuration ==============
LOG_DIR = "/tmp/logs"
os.makedirs(LOG_DIR, exist_ok=True)
LOG_FILE = os.path.join(LOG_DIR, "api.log")
# Create formatters
log_format = logging.Formatter(
'%(asctime)s | %(levelname)-8s | %(name)s | %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# File handler with rotation (10MB max, keep 5 backups)
file_handler = RotatingFileHandler(
LOG_FILE,
maxBytes=10*1024*1024,
backupCount=5,
encoding='utf-8'
)
file_handler.setFormatter(log_format)
file_handler.setLevel(logging.DEBUG)
# Console handler
console_handler = logging.StreamHandler()
console_handler.setFormatter(log_format)
console_handler.setLevel(logging.INFO)
# Root logger
logging.basicConfig(level=logging.DEBUG, handlers=[file_handler, console_handler])
logger = logging.getLogger("anthropic-api")
# Also capture uvicorn logs
for uvicorn_logger in ["uvicorn", "uvicorn.error", "uvicorn.access"]:
uv_log = logging.getLogger(uvicorn_logger)
uv_log.handlers = [file_handler, console_handler]
logger.info("=" * 60)
logger.info(f"Application Startup at {datetime.now().isoformat()}")
logger.info(f"Log file: {LOG_FILE}")
logger.info("=" * 60)
# ============== Configuration ==============
MODEL_ID = "HuggingFaceTB/SmolLM2-135M-Instruct" # Ultra-lightweight 135M model
MAX_TOKENS_DEFAULT = 1024
DEVICE = "cpu"
# Global model and tokenizer
model = None
tokenizer = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Load model on startup"""
global model, tokenizer
logger.info(f"Loading model: {MODEL_ID}")
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
logger.info("Tokenizer loaded successfully")
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float32,
device_map=DEVICE,
low_cpu_mem_usage=True
)
model.eval()
logger.info("Model loaded successfully!")
logger.info(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
except Exception as e:
logger.error(f"Failed to load model: {e}", exc_info=True)
raise
yield
# Cleanup
logger.info("Shutting down, cleaning up model...")
del model, tokenizer
app = FastAPI(
title="Anthropic-Compatible API",
description="Lightweight CPU-based API with Anthropic Messages API compatibility",
version="1.0.0",
lifespan=lifespan
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Request logging middleware
@app.middleware("http")
async def log_requests(request: Request, call_next):
request_id = str(uuid.uuid4())[:8]
start_time = time.time()
logger.info(f"[{request_id}] {request.method} {request.url.path} - Started")
try:
response = await call_next(request)
duration = (time.time() - start_time) * 1000
logger.info(f"[{request_id}] {request.method} {request.url.path} - {response.status_code} ({duration:.2f}ms)")
return response
except Exception as e:
duration = (time.time() - start_time) * 1000
logger.error(f"[{request_id}] {request.method} {request.url.path} - Error: {e} ({duration:.2f}ms)")
raise
# ============== Pydantic Models (Anthropic-Compatible) ==============
class ContentBlock(BaseModel):
type: str = "text"
text: str
class Message(BaseModel):
role: str
content: Union[str, List[ContentBlock]]
class MessageRequest(BaseModel):
model: str
messages: List[Message]
max_tokens: int = MAX_TOKENS_DEFAULT
temperature: Optional[float] = 0.7
top_p: Optional[float] = 0.9
top_k: Optional[int] = 50
stream: Optional[bool] = False
system: Optional[str] = None
stop_sequences: Optional[List[str]] = None
class Usage(BaseModel):
input_tokens: int
output_tokens: int
class MessageResponse(BaseModel):
id: str
type: str = "message"
role: str = "assistant"
content: List[ContentBlock]
model: str
stop_reason: str = "end_turn"
stop_sequence: Optional[str] = None
usage: Usage
class ErrorResponse(BaseModel):
type: str = "error"
error: dict
# ============== Helper Functions ==============
def format_messages(messages: List[Message], system: Optional[str] = None) -> str:
"""Format messages into a prompt string"""
formatted_messages = []
if system:
formatted_messages.append({"role": "system", "content": system})
for msg in messages:
content = msg.content
if isinstance(content, list):
content = " ".join([block.text for block in content if block.type == "text"])
formatted_messages.append({"role": msg.role, "content": content})
# Use chat template if available
if tokenizer.chat_template:
return tokenizer.apply_chat_template(
formatted_messages,
tokenize=False,
add_generation_prompt=True
)
# Fallback simple format
prompt = ""
for msg in formatted_messages:
role = msg["role"].capitalize()
prompt += f"{role}: {msg['content']}\n"
prompt += "Assistant: "
return prompt
def generate_id() -> str:
"""Generate a unique message ID"""
return f"msg_{uuid.uuid4().hex[:24]}"
# ============== API Endpoints ==============
@app.get("/")
async def root():
"""Health check endpoint"""
logger.debug("Root endpoint accessed")
return {
"status": "healthy",
"model": MODEL_ID,
"api_version": "2023-06-01",
"compatibility": "anthropic-messages-api",
"log_file": LOG_FILE
}
@app.get("/v1/models")
async def list_models():
"""List available models (Anthropic-compatible)"""
logger.debug("Models list requested")
return {
"object": "list",
"data": [
{
"id": "smollm2-135m",
"object": "model",
"created": int(time.time()),
"owned_by": "huggingface",
"display_name": "SmolLM2 135M Instruct"
}
]
}
@app.get("/logs")
async def get_logs(lines: int = 100):
"""Get recent log entries"""
try:
with open(LOG_FILE, 'r') as f:
all_lines = f.readlines()
recent_lines = all_lines[-lines:] if len(all_lines) > lines else all_lines
return {
"log_file": LOG_FILE,
"total_lines": len(all_lines),
"returned_lines": len(recent_lines),
"logs": "".join(recent_lines)
}
except FileNotFoundError:
return {"error": "Log file not found", "log_file": LOG_FILE}
@app.post("/v1/messages")
async def create_message(
request: MessageRequest,
x_api_key: Optional[str] = Header(None, alias="x-api-key"),
anthropic_version: Optional[str] = Header(None, alias="anthropic-version")
):
"""
Create a message (Anthropic Messages API compatible)
"""
message_id = generate_id()
logger.info(f"[{message_id}] Creating message - model: {request.model}, max_tokens: {request.max_tokens}, stream: {request.stream}")
try:
# Format the prompt
prompt = format_messages(request.messages, request.system)
logger.debug(f"[{message_id}] Prompt length: {len(prompt)} chars")
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
input_token_count = inputs.input_ids.shape[1]
logger.info(f"[{message_id}] Input tokens: {input_token_count}")
if request.stream:
logger.info(f"[{message_id}] Starting streaming response")
return await stream_response(request, inputs, input_token_count, message_id)
# Generate
gen_start = time.time()
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=request.max_tokens,
temperature=request.temperature if request.temperature > 0 else 1.0,
top_p=request.top_p,
top_k=request.top_k,
do_sample=request.temperature > 0,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
gen_time = time.time() - gen_start
# Decode only new tokens
generated_tokens = outputs[0][input_token_count:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
output_token_count = len(generated_tokens)
tokens_per_sec = output_token_count / gen_time if gen_time > 0 else 0
logger.info(f"[{message_id}] Generated {output_token_count} tokens in {gen_time:.2f}s ({tokens_per_sec:.1f} tok/s)")
# Build response
response = MessageResponse(
id=message_id,
content=[ContentBlock(type="text", text=generated_text.strip())],
model=request.model,
stop_reason="end_turn",
usage=Usage(
input_tokens=input_token_count,
output_tokens=output_token_count
)
)
return response
except Exception as e:
logger.error(f"[{message_id}] Error creating message: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
async def stream_response(request: MessageRequest, inputs, input_token_count: int, message_id: str):
"""Stream response using SSE (Server-Sent Events)"""
async def generate():
# Send message_start event
start_event = {
"type": "message_start",
"message": {
"id": message_id,
"type": "message",
"role": "assistant",
"content": [],
"model": request.model,
"stop_reason": None,
"stop_sequence": None,
"usage": {"input_tokens": input_token_count, "output_tokens": 0}
}
}
yield f"event: message_start\ndata: {json.dumps(start_event)}\n\n"
# Send content_block_start
block_start = {
"type": "content_block_start",
"index": 0,
"content_block": {"type": "text", "text": ""}
}
yield f"event: content_block_start\ndata: {json.dumps(block_start)}\n\n"
# Setup streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"max_new_tokens": request.max_tokens,
"temperature": request.temperature if request.temperature > 0 else 1.0,
"top_p": request.top_p,
"top_k": request.top_k,
"do_sample": request.temperature > 0,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"streamer": streamer,
}
# Run generation in a thread
gen_start = time.time()
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
output_tokens = 0
for text in streamer:
if text:
output_tokens += len(tokenizer.encode(text, add_special_tokens=False))
delta_event = {
"type": "content_block_delta",
"index": 0,
"delta": {"type": "text_delta", "text": text}
}
yield f"event: content_block_delta\ndata: {json.dumps(delta_event)}\n\n"
thread.join()
gen_time = time.time() - gen_start
tokens_per_sec = output_tokens / gen_time if gen_time > 0 else 0
logger.info(f"[{message_id}] Stream completed: {output_tokens} tokens in {gen_time:.2f}s ({tokens_per_sec:.1f} tok/s)")
# Send content_block_stop
block_stop = {"type": "content_block_stop", "index": 0}
yield f"event: content_block_stop\ndata: {json.dumps(block_stop)}\n\n"
# Send message_delta
delta = {
"type": "message_delta",
"delta": {"stop_reason": "end_turn", "stop_sequence": None},
"usage": {"output_tokens": output_tokens}
}
yield f"event: message_delta\ndata: {json.dumps(delta)}\n\n"
# Send message_stop
yield f"event: message_stop\ndata: {json.dumps({'type': 'message_stop'})}\n\n"
return StreamingResponse(
generate(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no"
}
)
# Token counting endpoint
@app.post("/v1/messages/count_tokens")
async def count_tokens(request: MessageRequest):
"""Count tokens for a message request"""
prompt = format_messages(request.messages, request.system)
tokens = tokenizer.encode(prompt)
logger.debug(f"Token count request: {len(tokens)} tokens")
return {"input_tokens": len(tokens)}
# Health check
@app.get("/health")
async def health():
return {"status": "ok", "model_loaded": model is not None, "log_file": LOG_FILE}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860, log_config=None)