Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ import json
|
|
| 9 |
import numpy as np
|
| 10 |
from ultralytics import YOLO
|
| 11 |
import cv2
|
|
|
|
| 12 |
|
| 13 |
# Load CLIP model and tokenizer
|
| 14 |
@st.cache_resource
|
|
@@ -28,14 +29,6 @@ def load_yolo_model():
|
|
| 28 |
|
| 29 |
yolo_model = load_yolo_model()
|
| 30 |
|
| 31 |
-
# Load and process data
|
| 32 |
-
@st.cache_data
|
| 33 |
-
def load_data():
|
| 34 |
-
with open('./musinsa-final.json', 'r', encoding='utf-8') as f:
|
| 35 |
-
return json.load(f)
|
| 36 |
-
|
| 37 |
-
data = load_data()
|
| 38 |
-
|
| 39 |
# Helper functions
|
| 40 |
def load_image_from_url(url, max_retries=3):
|
| 41 |
for attempt in range(max_retries):
|
|
@@ -49,6 +42,9 @@ def load_image_from_url(url, max_retries=3):
|
|
| 49 |
time.sleep(1)
|
| 50 |
else:
|
| 51 |
return None
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def get_image_embedding(image):
|
| 54 |
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
|
|
@@ -57,37 +53,6 @@ def get_image_embedding(image):
|
|
| 57 |
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 58 |
return image_features.cpu().numpy()
|
| 59 |
|
| 60 |
-
@st.cache_data
|
| 61 |
-
def process_database():
|
| 62 |
-
database_embeddings = []
|
| 63 |
-
database_info = []
|
| 64 |
-
|
| 65 |
-
for item in data:
|
| 66 |
-
image_url = item['이미지 링크'][0]
|
| 67 |
-
image = load_image_from_url(image_url)
|
| 68 |
-
if image is not None:
|
| 69 |
-
embedding = get_image_embedding(image)
|
| 70 |
-
database_embeddings.append(embedding)
|
| 71 |
-
database_info.append({
|
| 72 |
-
'id': item['\ufeff상품 ID'],
|
| 73 |
-
'category': item['카테고리'],
|
| 74 |
-
'brand': item['브랜드명'],
|
| 75 |
-
'name': item['제품명'],
|
| 76 |
-
'price': item['정가'],
|
| 77 |
-
'discount': item['할인율'],
|
| 78 |
-
'image_url': image_url
|
| 79 |
-
})
|
| 80 |
-
else:
|
| 81 |
-
st.warning(f"Skipping item {item['상품 ID']} due to image loading failure")
|
| 82 |
-
|
| 83 |
-
if database_embeddings:
|
| 84 |
-
return np.vstack(database_embeddings), database_info
|
| 85 |
-
else:
|
| 86 |
-
st.error("No valid embeddings were generated.")
|
| 87 |
-
return None, None
|
| 88 |
-
|
| 89 |
-
database_embeddings, database_info = process_database()
|
| 90 |
-
|
| 91 |
def get_text_embedding(text):
|
| 92 |
text_tokens = tokenizer([text]).to(device)
|
| 93 |
with torch.no_grad():
|
|
@@ -95,17 +60,33 @@ def get_text_embedding(text):
|
|
| 95 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 96 |
return text_features.cpu().numpy()
|
| 97 |
|
| 98 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
|
| 100 |
top_indices = np.argsort(similarities)[::-1][:top_k]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
results = []
|
| 102 |
-
for idx in
|
| 103 |
results.append({
|
| 104 |
-
'info':
|
| 105 |
-
'similarity': similarities[idx]
|
| 106 |
})
|
| 107 |
return results
|
| 108 |
|
|
|
|
|
|
|
| 109 |
def detect_clothing(image):
|
| 110 |
results = yolo_model(image)
|
| 111 |
detections = results[0].boxes.data.cpu().numpy()
|
|
@@ -182,7 +163,7 @@ elif st.session_state.step == 'show_results':
|
|
| 182 |
cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox'])
|
| 183 |
st.image(cropped_image, caption="Cropped Image", use_column_width=True)
|
| 184 |
query_embedding = get_image_embedding(cropped_image)
|
| 185 |
-
similar_images = find_similar_images(query_embedding)
|
| 186 |
|
| 187 |
st.subheader("Similar Items:")
|
| 188 |
for img in similar_images:
|
|
@@ -208,7 +189,7 @@ else: # Text search
|
|
| 208 |
if st.button("Search by Text"):
|
| 209 |
if query_text:
|
| 210 |
text_embedding = get_text_embedding(query_text)
|
| 211 |
-
similar_images = find_similar_images(text_embedding)
|
| 212 |
st.subheader("Similar Items:")
|
| 213 |
for img in similar_images:
|
| 214 |
col1, col2 = st.columns(2)
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
from ultralytics import YOLO
|
| 11 |
import cv2
|
| 12 |
+
import chromadb
|
| 13 |
|
| 14 |
# Load CLIP model and tokenizer
|
| 15 |
@st.cache_resource
|
|
|
|
| 29 |
|
| 30 |
yolo_model = load_yolo_model()
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Helper functions
|
| 33 |
def load_image_from_url(url, max_retries=3):
|
| 34 |
for attempt in range(max_retries):
|
|
|
|
| 42 |
time.sleep(1)
|
| 43 |
else:
|
| 44 |
return None
|
| 45 |
+
#Load chromaDB
|
| 46 |
+
client = chromadb.PersistentClient(path="./clothesDB")
|
| 47 |
+
collection = client.get_collection(name="fashion_items_ver2")
|
| 48 |
|
| 49 |
def get_image_embedding(image):
|
| 50 |
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
|
|
|
|
| 53 |
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 54 |
return image_features.cpu().numpy()
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def get_text_embedding(text):
|
| 57 |
text_tokens = tokenizer([text]).to(device)
|
| 58 |
with torch.no_grad():
|
|
|
|
| 60 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 61 |
return text_features.cpu().numpy()
|
| 62 |
|
| 63 |
+
def get_all_embeddings_from_collection(collection):
|
| 64 |
+
all_embeddings = collection.get(include=['embeddings'])['embeddings']
|
| 65 |
+
return np.array(all_embeddings)
|
| 66 |
+
|
| 67 |
+
def get_metadata_from_ids(collection, ids):
|
| 68 |
+
results = collection.get(ids=ids)
|
| 69 |
+
return results['metadatas']
|
| 70 |
+
|
| 71 |
+
def find_similar_images(query_embedding, collection, top_k=5):
|
| 72 |
+
database_embeddings = get_all_embeddings_from_collection(collection)
|
| 73 |
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
|
| 74 |
top_indices = np.argsort(similarities)[::-1][:top_k]
|
| 75 |
+
|
| 76 |
+
all_data = collection.get(include=['metadatas'])['metadatas']
|
| 77 |
+
|
| 78 |
+
top_metadatas = [all_data[idx] for idx in top_indices]
|
| 79 |
+
|
| 80 |
results = []
|
| 81 |
+
for idx, metadata in enumerate(top_metadatas):
|
| 82 |
results.append({
|
| 83 |
+
'info': metadata,
|
| 84 |
+
'similarity': similarities[top_indices[idx]]
|
| 85 |
})
|
| 86 |
return results
|
| 87 |
|
| 88 |
+
|
| 89 |
+
|
| 90 |
def detect_clothing(image):
|
| 91 |
results = yolo_model(image)
|
| 92 |
detections = results[0].boxes.data.cpu().numpy()
|
|
|
|
| 163 |
cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox'])
|
| 164 |
st.image(cropped_image, caption="Cropped Image", use_column_width=True)
|
| 165 |
query_embedding = get_image_embedding(cropped_image)
|
| 166 |
+
similar_images = find_similar_images(query_embedding, collection)
|
| 167 |
|
| 168 |
st.subheader("Similar Items:")
|
| 169 |
for img in similar_images:
|
|
|
|
| 189 |
if st.button("Search by Text"):
|
| 190 |
if query_text:
|
| 191 |
text_embedding = get_text_embedding(query_text)
|
| 192 |
+
similar_images = find_similar_images(text_embedding, collection)
|
| 193 |
st.subheader("Similar Items:")
|
| 194 |
for img in similar_images:
|
| 195 |
col1, col2 = st.columns(2)
|