Spaces:
Sleeping
Sleeping
Delete utils/lexical_search.py
Browse files- utils/lexical_search.py +0 -251
utils/lexical_search.py
DELETED
|
@@ -1,251 +0,0 @@
|
|
| 1 |
-
from haystack.nodes import TfidfRetriever
|
| 2 |
-
from haystack.document_stores import InMemoryDocumentStore
|
| 3 |
-
import spacy
|
| 4 |
-
import re
|
| 5 |
-
from spacy.matcher import Matcher
|
| 6 |
-
from markdown import markdown
|
| 7 |
-
from annotated_text import annotation
|
| 8 |
-
from haystack.schema import Document
|
| 9 |
-
from typing import List, Text, Tuple
|
| 10 |
-
from typing_extensions import Literal
|
| 11 |
-
from utils.preprocessing import processingpipeline
|
| 12 |
-
from utils.streamlitcheck import check_streamlit
|
| 13 |
-
import logging
|
| 14 |
-
try:
|
| 15 |
-
from termcolor import colored
|
| 16 |
-
except:
|
| 17 |
-
pass
|
| 18 |
-
|
| 19 |
-
try:
|
| 20 |
-
import streamlit as st
|
| 21 |
-
except ImportError:
|
| 22 |
-
logging.info("Streamlit not installed")
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def runLexicalPreprocessingPipeline(file_name:str,file_path:str,
|
| 26 |
-
split_by: Literal["sentence", "word"] = 'word',
|
| 27 |
-
split_length:int = 80, split_overlap:int = 0,
|
| 28 |
-
remove_punc:bool = False,)->List[Document]:
|
| 29 |
-
"""
|
| 30 |
-
creates the pipeline and runs the preprocessing pipeline,
|
| 31 |
-
the params for pipeline are fetched from paramconfig. As lexical doesnt gets
|
| 32 |
-
affected by overlap, threfore split_overlap = 0 in default paramconfig and
|
| 33 |
-
split_by = word.
|
| 34 |
-
|
| 35 |
-
Params
|
| 36 |
-
------------
|
| 37 |
-
|
| 38 |
-
file_name: filename, in case of streamlit application use
|
| 39 |
-
st.session_state['filename']
|
| 40 |
-
file_path: filepath, in case of streamlit application use
|
| 41 |
-
st.session_state['filepath']
|
| 42 |
-
split_by: document splitting strategy either as word or sentence
|
| 43 |
-
split_length: when synthetically creating the paragrpahs from document,
|
| 44 |
-
it defines the length of paragraph.
|
| 45 |
-
split_overlap: Number of words or sentences that overlap when creating
|
| 46 |
-
the paragraphs. This is done as one sentence or 'some words' make sense
|
| 47 |
-
when read in together with others. Therefore the overlap is used.
|
| 48 |
-
splititng of text.
|
| 49 |
-
removePunc: to remove all Punctuation including ',' and '.' or not
|
| 50 |
-
|
| 51 |
-
Return
|
| 52 |
-
--------------
|
| 53 |
-
List[Document]: When preprocessing pipeline is run, the output dictionary
|
| 54 |
-
has four objects. For the lexicaal search using TFIDFRetriever we
|
| 55 |
-
need to use the List of Haystack Document, which can be fetched by
|
| 56 |
-
key = 'documents' on output.
|
| 57 |
-
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
lexical_processing_pipeline = processingpipeline()
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
output_lexical_pre = lexical_processing_pipeline.run(file_paths = file_path,
|
| 64 |
-
params= {"FileConverter": {"file_path": file_path, \
|
| 65 |
-
"file_name": file_name},
|
| 66 |
-
"UdfPreProcessor": {"remove_punc": remove_punc, \
|
| 67 |
-
"split_by": split_by, \
|
| 68 |
-
"split_length":split_length,\
|
| 69 |
-
"split_overlap": split_overlap}})
|
| 70 |
-
|
| 71 |
-
return output_lexical_pre
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def tokenize_lexical_query(query:str)-> List[str]:
|
| 75 |
-
"""
|
| 76 |
-
Removes the stop words from query and returns the list of important keywords
|
| 77 |
-
in query. For the lexical search the relevent paragraphs in document are
|
| 78 |
-
retreived using TfIDFretreiver from Haystack. However to highlight these
|
| 79 |
-
keywords we need the tokenized form of query.
|
| 80 |
-
|
| 81 |
-
Params
|
| 82 |
-
--------
|
| 83 |
-
query: string which represents either list of keywords user is looking for
|
| 84 |
-
or a query in form of Question.
|
| 85 |
-
|
| 86 |
-
Return
|
| 87 |
-
-----------
|
| 88 |
-
token_list: list of important keywords in the query.
|
| 89 |
-
|
| 90 |
-
"""
|
| 91 |
-
nlp = spacy.load("en_core_web_sm")
|
| 92 |
-
token_list = [token.text.lower() for token in nlp(query)
|
| 93 |
-
if not (token.is_stop or token.is_punct)]
|
| 94 |
-
return token_list
|
| 95 |
-
|
| 96 |
-
def runSpacyMatcher(token_list:List[str], document:Text
|
| 97 |
-
)->Tuple[List[List[int]],spacy.tokens.doc.Doc]:
|
| 98 |
-
"""
|
| 99 |
-
Using the spacy in backend finds the keywords in the document using the
|
| 100 |
-
Matcher class from spacy. We can alternatively use the regex, but spacy
|
| 101 |
-
finds all keywords in serialized manner which helps in annotation of answers.
|
| 102 |
-
|
| 103 |
-
Params
|
| 104 |
-
-------
|
| 105 |
-
token_list: this is token list which tokenize_lexical_query function returns
|
| 106 |
-
document: text in which we need to find the tokens
|
| 107 |
-
|
| 108 |
-
Return
|
| 109 |
-
--------
|
| 110 |
-
matches: List of [start_index, end_index] in the spacydoc(at word level not
|
| 111 |
-
character) for the keywords in token list.
|
| 112 |
-
|
| 113 |
-
spacydoc: the keyword index in the spacydoc are at word level and not character,
|
| 114 |
-
therefore to allow the annotator to work seamlessly we return the spacydoc.
|
| 115 |
-
|
| 116 |
-
"""
|
| 117 |
-
nlp = spacy.load("en_core_web_sm")
|
| 118 |
-
spacydoc = nlp(document)
|
| 119 |
-
matcher = Matcher(nlp.vocab)
|
| 120 |
-
token_pattern = [[{"LOWER":token}] for token in token_list]
|
| 121 |
-
matcher.add(",".join(token_list), token_pattern)
|
| 122 |
-
spacymatches = matcher(spacydoc)
|
| 123 |
-
|
| 124 |
-
# getting start and end index in spacydoc so that annotator can work seamlessly
|
| 125 |
-
matches = []
|
| 126 |
-
for match_id, start, end in spacymatches:
|
| 127 |
-
matches = matches + [[start, end]]
|
| 128 |
-
|
| 129 |
-
return matches, spacydoc
|
| 130 |
-
|
| 131 |
-
def runRegexMatcher(token_list:List[str], document:Text):
|
| 132 |
-
"""
|
| 133 |
-
Using the regex in backend finds the keywords in the document.
|
| 134 |
-
|
| 135 |
-
Params
|
| 136 |
-
-------
|
| 137 |
-
token_list: this is token list which tokenize_lexical_query function returns
|
| 138 |
-
|
| 139 |
-
document: text in which we need to find the tokens
|
| 140 |
-
|
| 141 |
-
Return
|
| 142 |
-
--------
|
| 143 |
-
matches: List of [start_index, end_index] in the document for the keywords
|
| 144 |
-
in token list at character level.
|
| 145 |
-
|
| 146 |
-
document: the keyword index returned by regex are at character level,
|
| 147 |
-
therefore to allow the annotator to work seamlessly we return the text back.
|
| 148 |
-
|
| 149 |
-
"""
|
| 150 |
-
matches = []
|
| 151 |
-
for token in token_list:
|
| 152 |
-
matches = (matches +
|
| 153 |
-
[[val.start(), val.start() +
|
| 154 |
-
len(token)] for val in re.finditer(token, document)])
|
| 155 |
-
|
| 156 |
-
return matches, document
|
| 157 |
-
|
| 158 |
-
def spacyAnnotator(matches: List[List[int]], document:spacy.tokens.doc.Doc):
|
| 159 |
-
"""
|
| 160 |
-
This is spacy Annotator and needs spacy.doc
|
| 161 |
-
Annotates the text in the document defined by list of [start index, end index]
|
| 162 |
-
Example: "How are you today", if document type is text, matches = [[0,3]]
|
| 163 |
-
will give answer = "How", however in case we used the spacy matcher then the
|
| 164 |
-
matches = [[0,3]] will give answer = "How are you". However if spacy is used
|
| 165 |
-
to find "How" then the matches = [[0,1]] for the string defined above.
|
| 166 |
-
|
| 167 |
-
Params
|
| 168 |
-
-----------
|
| 169 |
-
matches: As mentioned its list of list. Example [[0,1],[10,13]]
|
| 170 |
-
document: document which needs to be indexed.
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
Return
|
| 174 |
-
--------
|
| 175 |
-
will send the output to either app front end using streamlit or
|
| 176 |
-
write directly to output screen.
|
| 177 |
-
|
| 178 |
-
"""
|
| 179 |
-
start = 0
|
| 180 |
-
annotated_text = ""
|
| 181 |
-
for match in matches:
|
| 182 |
-
start_idx = match[0]
|
| 183 |
-
end_idx = match[1]
|
| 184 |
-
|
| 185 |
-
if check_streamlit():
|
| 186 |
-
annotated_text = (annotated_text + document[start:start_idx].text
|
| 187 |
-
+ str(annotation(body=document[start_idx:end_idx].text,
|
| 188 |
-
label="ANSWER", background="#964448", color='#ffffff')))
|
| 189 |
-
else:
|
| 190 |
-
annotated_text = (annotated_text + document[start:start_idx].text
|
| 191 |
-
+ colored(document[start_idx:end_idx].text,
|
| 192 |
-
"green", attrs = ['bold']))
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
start = end_idx
|
| 196 |
-
|
| 197 |
-
annotated_text = annotated_text + document[end_idx:].text
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
if check_streamlit():
|
| 201 |
-
|
| 202 |
-
st.write(
|
| 203 |
-
markdown(annotated_text),
|
| 204 |
-
unsafe_allow_html=True,
|
| 205 |
-
)
|
| 206 |
-
else:
|
| 207 |
-
print(annotated_text)
|
| 208 |
-
|
| 209 |
-
def lexical_search(query:Text, documents:List[Document],top_k:int):
|
| 210 |
-
"""
|
| 211 |
-
Performs the Lexical search on the List of haystack documents which is
|
| 212 |
-
returned by preprocessing Pipeline.
|
| 213 |
-
|
| 214 |
-
Params
|
| 215 |
-
-------
|
| 216 |
-
query: Keywords that need to be searche in documents.
|
| 217 |
-
documents: List of Haystack documents returned by preprocessing pipeline.
|
| 218 |
-
top_k: Number of Top results to be fetched.
|
| 219 |
-
|
| 220 |
-
"""
|
| 221 |
-
|
| 222 |
-
document_store = InMemoryDocumentStore()
|
| 223 |
-
document_store.write_documents(documents)
|
| 224 |
-
|
| 225 |
-
# Haystack Retriever works with document stores only.
|
| 226 |
-
retriever = TfidfRetriever(document_store)
|
| 227 |
-
results = retriever.retrieve(query=query, top_k = top_k)
|
| 228 |
-
query_tokens = tokenize_lexical_query(query)
|
| 229 |
-
flag = True
|
| 230 |
-
for count, result in enumerate(results):
|
| 231 |
-
matches, doc = runSpacyMatcher(query_tokens,result.content)
|
| 232 |
-
|
| 233 |
-
if len(matches) != 0:
|
| 234 |
-
if flag:
|
| 235 |
-
flag = False
|
| 236 |
-
if check_streamlit():
|
| 237 |
-
st.markdown("##### Top few lexical search (TFIDF) hits #####")
|
| 238 |
-
else:
|
| 239 |
-
print("Top few lexical search (TFIDF) hits")
|
| 240 |
-
|
| 241 |
-
if check_streamlit():
|
| 242 |
-
st.write("Result {}".format(count+1))
|
| 243 |
-
else:
|
| 244 |
-
print("Results {}".format(count +1))
|
| 245 |
-
spacyAnnotator(matches, doc)
|
| 246 |
-
|
| 247 |
-
if flag:
|
| 248 |
-
if check_streamlit():
|
| 249 |
-
st.info("🤔 No relevant result found. Please try another keyword.")
|
| 250 |
-
else:
|
| 251 |
-
print("No relevant result found. Please try another keyword.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|