Spaces:
Sleeping
Sleeping
Delete utils/keyword_extraction.py
Browse files- utils/keyword_extraction.py +0 -140
utils/keyword_extraction.py
DELETED
|
@@ -1,140 +0,0 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
# from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
|
| 3 |
-
# import nltk
|
| 4 |
-
# nltk.download('stopwords')
|
| 5 |
-
# from nltk.corpus import stopwords
|
| 6 |
-
import pickle
|
| 7 |
-
from typing import List, Text
|
| 8 |
-
import logging
|
| 9 |
-
from summa import keywords
|
| 10 |
-
|
| 11 |
-
try:
|
| 12 |
-
import streamlit as st
|
| 13 |
-
except ImportError:
|
| 14 |
-
logging.info("Streamlit not installed")
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
def sort_coo(coo_matrix):
|
| 18 |
-
"""
|
| 19 |
-
It takes Coordinate format scipy sparse matrix and extracts info from same.\
|
| 20 |
-
1. https://kavita-ganesan.com/python-keyword-extraction/#.Y2-TFHbMJPb
|
| 21 |
-
"""
|
| 22 |
-
tuples = zip(coo_matrix.col, coo_matrix.data)
|
| 23 |
-
return sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True)
|
| 24 |
-
|
| 25 |
-
def extract_topn_from_vector(feature_names, sorted_items, top_n=10):
|
| 26 |
-
"""get the feature names and tf-idf score of top n items
|
| 27 |
-
|
| 28 |
-
Params
|
| 29 |
-
---------
|
| 30 |
-
feature_names: list of words from vectorizer
|
| 31 |
-
sorted_items: tuple returned by sort_coo function defined in \
|
| 32 |
-
keyword_extraction.py
|
| 33 |
-
topn: topn words to be extracted using tfidf
|
| 34 |
-
|
| 35 |
-
Return
|
| 36 |
-
----------
|
| 37 |
-
results: top extracted keywords
|
| 38 |
-
|
| 39 |
-
"""
|
| 40 |
-
|
| 41 |
-
#use only topn items from vector
|
| 42 |
-
sorted_items = sorted_items[:top_n]
|
| 43 |
-
score_vals = []
|
| 44 |
-
feature_vals = []
|
| 45 |
-
|
| 46 |
-
# word index and corresponding tf-idf score
|
| 47 |
-
for idx, score in sorted_items:
|
| 48 |
-
|
| 49 |
-
#keep track of feature name and its corresponding score
|
| 50 |
-
score_vals.append(round(score, 3))
|
| 51 |
-
feature_vals.append(feature_names[idx])
|
| 52 |
-
|
| 53 |
-
results= {}
|
| 54 |
-
for idx in range(len(feature_vals)):
|
| 55 |
-
results[feature_vals[idx]]=score_vals[idx]
|
| 56 |
-
|
| 57 |
-
return results
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def tfidf_keyword(textdata:str, vectorizer, tfidfmodel, top_n):
|
| 61 |
-
"""
|
| 62 |
-
TFIDF based keywords extraction
|
| 63 |
-
|
| 64 |
-
Params
|
| 65 |
-
---------
|
| 66 |
-
vectorizer: trained cont vectorizer model
|
| 67 |
-
tfidfmodel: TFIDF Tranformer model
|
| 68 |
-
top_n: Top N keywords to be extracted
|
| 69 |
-
textdata: text data to which needs keyword extraction
|
| 70 |
-
|
| 71 |
-
Return
|
| 72 |
-
----------
|
| 73 |
-
keywords: top extracted keywords
|
| 74 |
-
|
| 75 |
-
"""
|
| 76 |
-
features = vectorizer.get_feature_names_out()
|
| 77 |
-
tf_idf_vector=tfidfmodel.transform(vectorizer.transform(textdata))
|
| 78 |
-
sorted_items=sort_coo(tf_idf_vector.tocoo())
|
| 79 |
-
results=extract_topn_from_vector(features,sorted_items,top_n)
|
| 80 |
-
keywords = [keyword for keyword in results]
|
| 81 |
-
return keywords
|
| 82 |
-
|
| 83 |
-
def keyword_extraction(sdg:int,sdgdata:List[Text], top_n:int=10):
|
| 84 |
-
"""
|
| 85 |
-
TFIDF based keywords extraction
|
| 86 |
-
|
| 87 |
-
Params
|
| 88 |
-
---------
|
| 89 |
-
sdg: which sdg tfidf model to be used
|
| 90 |
-
sdgdata: text data to which needs keyword extraction
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
Return
|
| 94 |
-
----------
|
| 95 |
-
keywords: top extracted keywords
|
| 96 |
-
|
| 97 |
-
"""
|
| 98 |
-
model_path = "docStore/sdg{}/".format(sdg)
|
| 99 |
-
vectorizer = pickle.load(open(model_path+'vectorizer.pkl', 'rb'))
|
| 100 |
-
tfidfmodel = pickle.load(open(model_path+'tfidfmodel.pkl', 'rb'))
|
| 101 |
-
features = vectorizer.get_feature_names_out()
|
| 102 |
-
tf_idf_vector=tfidfmodel.transform(vectorizer.transform(sdgdata))
|
| 103 |
-
sorted_items=sort_coo(tf_idf_vector.tocoo())
|
| 104 |
-
top_n = top_n
|
| 105 |
-
results=extract_topn_from_vector(features,sorted_items,top_n)
|
| 106 |
-
keywords = [keyword for keyword in results]
|
| 107 |
-
return keywords
|
| 108 |
-
|
| 109 |
-
@st.cache(allow_output_mutation=True)
|
| 110 |
-
def textrank(textdata:Text, ratio:float = 0.1, words:int = 0)->List[str]:
|
| 111 |
-
"""
|
| 112 |
-
wrappper function to perform textrank, uses either ratio or wordcount to
|
| 113 |
-
extract top keywords limited by words or ratio.
|
| 114 |
-
1. https://github.com/summanlp/textrank/blob/master/summa/keywords.py
|
| 115 |
-
|
| 116 |
-
Params
|
| 117 |
-
--------
|
| 118 |
-
textdata: text data to perform the textrank.
|
| 119 |
-
ratio: float to limit the number of keywords as proportion of total token \
|
| 120 |
-
in textdata
|
| 121 |
-
words: number of keywords to be extracted. Takes priority over ratio if \
|
| 122 |
-
Non zero. Howevr incase the pagerank returns lesser keywords than \
|
| 123 |
-
compared to fix value then ratio is used.
|
| 124 |
-
|
| 125 |
-
Return
|
| 126 |
-
--------
|
| 127 |
-
results: extracted keywords
|
| 128 |
-
"""
|
| 129 |
-
if words == 0:
|
| 130 |
-
logging.info("Textrank using defulat ratio value = 0.1, as no words limit given")
|
| 131 |
-
results = keywords.keywords(textdata, ratio= ratio).split("\n")
|
| 132 |
-
else:
|
| 133 |
-
try:
|
| 134 |
-
results = keywords.keywords(textdata, words= words).split("\n")
|
| 135 |
-
except:
|
| 136 |
-
results = keywords.keywords(textdata, ratio = ratio).split("\n")
|
| 137 |
-
|
| 138 |
-
return results
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|