Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from setfit import SetFitModel | |
| # Load the model | |
| model = SetFitModel.from_pretrained("peter2000/vulnerable-groups-setfit") | |
| # Define the classes | |
| group_dict = { | |
| 1: 'Women and girls', | |
| 2: 'Children and youth', | |
| 3: 'Landlocked countries', | |
| 4: 'Outdoor workers', | |
| 5: 'Riverine and flood-prone areas', | |
| 6: 'Small-scale farmers', | |
| 7: 'Men and boys', | |
| 8: 'Small island developing states (SIDS)', | |
| 9: 'Fisherfolk and fishing communities', | |
| 10: 'Children with disabilities', | |
| 11: 'Low-income households', | |
| 12: 'Rural communities', | |
| 13: 'Pregnant women and new mothers', | |
| 14: 'Young adults', | |
| 15: 'Urban slums', | |
| 16: 'Gender non-conforming individuals', | |
| 17: 'Remote communities', | |
| 18: 'Older adults and the elderly', | |
| 19: 'Elderly population', | |
| 20: 'Mountain communities', | |
| 21: 'People with disabilities', | |
| 22: 'Indigenous peoples', | |
| 23: 'Informal settlements and slums', | |
| 24: 'Coastal communities', | |
| 25: 'Informal sector workers', | |
| 26: 'Drought-prone regions', | |
| 27: 'People with pre-existing health conditions', | |
| 28: 'Small-scale farmers and subsistence agriculture', | |
| 29: 'Migrants and displaced populations', | |
| 30: 'no vulnerable group mentioned'} | |
| def predict(text): | |
| preds = model([text])[0].item() | |
| return group_dict[preds] | |
| text = st.text_area('enter your text here') | |
| x = st.slider('Select a value') | |
| st.write(x, 'squared is', x * x) |