Spaces:
Sleeping
Sleeping
Create finetune_full.py
Browse files- finetune_full.py +89 -0
finetune_full.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# finetune_full.py
|
| 2 |
+
import torch
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
os.environ["OMP_NUM_THREADS"] = "8"
|
| 8 |
+
|
| 9 |
+
base_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 10 |
+
new_model_dir = "./mistral-7b-brvm-full-finetuned"
|
| 11 |
+
output_dir = "./results_full"
|
| 12 |
+
|
| 13 |
+
# 1. Dataset
|
| 14 |
+
dataset = load_dataset("lamekemal/brvm_finetune")
|
| 15 |
+
|
| 16 |
+
# 2. Charger modèle + tokenizer en FP16
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
base_model,
|
| 19 |
+
torch_dtype=torch.float16,
|
| 20 |
+
device_map="auto",
|
| 21 |
+
trust_remote_code=True,
|
| 22 |
+
)
|
| 23 |
+
model.config.use_cache = False
|
| 24 |
+
model.gradient_checkpointing_enable()
|
| 25 |
+
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
| 27 |
+
if tokenizer.pad_token is None:
|
| 28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 29 |
+
tokenizer.padding_side = "right"
|
| 30 |
+
|
| 31 |
+
# 3. Prétraitement
|
| 32 |
+
def tokenize_function(examples):
|
| 33 |
+
texts = [
|
| 34 |
+
f"Instruction: {instr}\nRéponse: {resp}"
|
| 35 |
+
for instr, resp in zip(examples["instruction"], examples["response"])
|
| 36 |
+
]
|
| 37 |
+
return tokenizer(
|
| 38 |
+
texts,
|
| 39 |
+
truncation=True,
|
| 40 |
+
padding="max_length",
|
| 41 |
+
max_length=512,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 45 |
+
|
| 46 |
+
# 4. Arguments d’entraînement
|
| 47 |
+
training_args = TrainingArguments(
|
| 48 |
+
output_dir=output_dir,
|
| 49 |
+
num_train_epochs=3,
|
| 50 |
+
per_device_train_batch_size=4, # full finetune = VRAM lourd
|
| 51 |
+
gradient_accumulation_steps=4,
|
| 52 |
+
optim="adamw_torch_fused",
|
| 53 |
+
save_steps=100,
|
| 54 |
+
logging_steps=10,
|
| 55 |
+
learning_rate=2e-5,
|
| 56 |
+
fp16=True,
|
| 57 |
+
max_grad_norm=1.0,
|
| 58 |
+
warmup_ratio=0.03,
|
| 59 |
+
lr_scheduler_type="cosine",
|
| 60 |
+
report_to="tensorboard",
|
| 61 |
+
evaluation_strategy="steps",
|
| 62 |
+
eval_steps=100,
|
| 63 |
+
save_total_limit=2,
|
| 64 |
+
load_best_model_at_end=True,
|
| 65 |
+
metric_for_best_model="eval_loss",
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# 5. Trainer classique (pas LoRA)
|
| 69 |
+
trainer = Trainer(
|
| 70 |
+
model=model,
|
| 71 |
+
train_dataset=tokenized_datasets["train"],
|
| 72 |
+
eval_dataset=tokenized_datasets["validation"],
|
| 73 |
+
args=training_args,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# 6. Entraînement
|
| 77 |
+
trainer.train()
|
| 78 |
+
|
| 79 |
+
# 7. Sauvegarde locale et push Hub
|
| 80 |
+
trainer.save_model(new_model_dir)
|
| 81 |
+
tokenizer.save_pretrained(new_model_dir)
|
| 82 |
+
|
| 83 |
+
from huggingface_hub import HfApi
|
| 84 |
+
api = HfApi()
|
| 85 |
+
repo_id = "lamekemal/mistral-7b-brvm-full-finetuned"
|
| 86 |
+
trainer.push_to_hub(repo_id)
|
| 87 |
+
tokenizer.push_to_hub(repo_id)
|
| 88 |
+
|
| 89 |
+
print(f"✅ Full fine-tune sauvegardé dans {new_model_dir} et poussé sur Hugging Face Hub")
|