Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,148 +1,49 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
)
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
print(f"GPU: {torch.cuda.get_device_name(0)} - "
|
| 22 |
-
f"Mémoire: {torch.cuda.get_device_properties(0).total_memory / (1024**3):.2f} GB")
|
| 23 |
-
|
| 24 |
-
# 3. Dataset
|
| 25 |
-
dataset = load_dataset("lamekemal/brvm_finetune")
|
| 26 |
-
|
| 27 |
-
# 4. Quantization
|
| 28 |
-
bnb_config = BitsAndBytesConfig(
|
| 29 |
-
load_in_4bit=True,
|
| 30 |
-
bnb_4bit_quant_type="nf4",
|
| 31 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 32 |
-
bnb_4bit_use_double_quant=False,
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
# 5. Charger modèle + tokenizer
|
| 36 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
-
base_model,
|
| 38 |
-
quantization_config=bnb_config,
|
| 39 |
-
device_map="auto",
|
| 40 |
-
trust_remote_code=True,
|
| 41 |
-
)
|
| 42 |
-
model.config.use_cache = False
|
| 43 |
-
model = prepare_model_for_kbit_training(model)
|
| 44 |
-
|
| 45 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
| 46 |
-
if tokenizer.pad_token is None:
|
| 47 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 48 |
-
tokenizer.padding_side = "right"
|
| 49 |
-
|
| 50 |
-
# ============================================
|
| 51 |
-
# 10. Preprocessing (max_seq_length=512)
|
| 52 |
-
# ============================================
|
| 53 |
-
def tokenize_function(examples):
|
| 54 |
-
texts = [
|
| 55 |
-
f"Instruction: {instr}\nRéponse: {resp}"
|
| 56 |
-
for instr, resp in zip(examples["instruction"], examples["response"])
|
| 57 |
-
]
|
| 58 |
-
return tokenizer(
|
| 59 |
-
texts,
|
| 60 |
-
truncation=True,
|
| 61 |
-
padding="max_length",
|
| 62 |
-
max_length=512,
|
| 63 |
)
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
lora_config = LoraConfig(
|
| 68 |
-
r=16,
|
| 69 |
-
lora_alpha=32,
|
| 70 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
|
| 71 |
-
"gate_proj", "up_proj", "down_proj"],
|
| 72 |
-
lora_dropout=0.05,
|
| 73 |
-
bias="none",
|
| 74 |
-
task_type="CAUSAL_LM",
|
| 75 |
-
)
|
| 76 |
-
model = get_peft_model(model, lora_config)
|
| 77 |
-
|
| 78 |
-
sft_config = SFTConfig(
|
| 79 |
-
output_dir=output_dir,
|
| 80 |
-
num_train_epochs=3,
|
| 81 |
-
per_device_train_batch_size=2,
|
| 82 |
-
gradient_accumulation_steps=4,
|
| 83 |
-
optim="paged_adamw_32bit",
|
| 84 |
-
save_steps=100,
|
| 85 |
-
logging_steps=10,
|
| 86 |
-
learning_rate=2e-4,
|
| 87 |
-
fp16=False,
|
| 88 |
-
bf16=torch.cuda.is_available(),
|
| 89 |
-
max_grad_norm=0.3,
|
| 90 |
-
warmup_ratio=0.03,
|
| 91 |
-
group_by_length=True,
|
| 92 |
-
lr_scheduler_type="cosine",
|
| 93 |
-
report_to="tensorboard",
|
| 94 |
-
evaluation_strategy="steps",
|
| 95 |
-
eval_steps=100,
|
| 96 |
-
save_total_limit=2,
|
| 97 |
-
load_best_model_at_end=True,
|
| 98 |
-
metric_for_best_model="eval_loss",
|
| 99 |
-
max_seq_length=512,
|
| 100 |
-
packing=False,
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
# ============================================
|
| 104 |
-
# 12. TrainingArguments
|
| 105 |
-
# ============================================
|
| 106 |
-
use_bf16 = torch.cuda.is_available() and torch.cuda.is_bf16_supported()
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
gradient_accumulation_steps=2,
|
| 113 |
-
optim="paged_adamw_8bit",
|
| 114 |
-
save_steps=100,
|
| 115 |
-
logging_steps=10,
|
| 116 |
-
learning_rate=2e-4,
|
| 117 |
-
#fp16=not use_bf16,
|
| 118 |
-
bf16=True,
|
| 119 |
-
max_grad_norm=0.3,
|
| 120 |
-
warmup_ratio=0.03,
|
| 121 |
-
group_by_length=True,
|
| 122 |
-
lr_scheduler_type="cosine",
|
| 123 |
-
report_to="tensorboard",
|
| 124 |
-
eval_strategy="steps", # <-- corrige le nom
|
| 125 |
-
eval_steps=100,
|
| 126 |
-
save_total_limit=2,
|
| 127 |
-
load_best_model_at_end=True,
|
| 128 |
-
metric_for_best_model="eval_loss",
|
| 129 |
-
)
|
| 130 |
|
| 131 |
-
#
|
| 132 |
-
|
| 133 |
-
#
|
| 134 |
-
trainer = SFTTrainer(
|
| 135 |
-
model=model,
|
| 136 |
-
train_dataset=tokenized_datasets["train"],
|
| 137 |
-
eval_dataset=tokenized_datasets["validation"],
|
| 138 |
-
peft_config=lora_config,
|
| 139 |
-
args=training_args
|
| 140 |
-
)
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
MODEL_DIR = "./mistral-7b-brvm-finetuned"
|
| 7 |
+
|
| 8 |
+
# Fonction d’entraînement (appelle ton script de fine-tuning)
|
| 9 |
+
def train_model():
|
| 10 |
+
os.system("python finetune.py") # tu mets ton code d'entraînement dans finetune.py
|
| 11 |
+
return "✅ Entraînement terminé ! Le modèle est sauvegardé dans " + MODEL_DIR
|
| 12 |
+
|
| 13 |
+
# Chargement du modèle (fine-tuné si dispo, sinon base)
|
| 14 |
+
def load_model():
|
| 15 |
+
model_name = MODEL_DIR if os.path.exists(MODEL_DIR) else "mistralai/Mistral-7B-Instruct-v0.3"
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
model_name,
|
| 19 |
+
device_map="auto",
|
| 20 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 21 |
+
trust_remote_code=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
| 24 |
+
return pipe
|
| 25 |
|
| 26 |
+
# On charge le pipeline une fois au démarrage
|
| 27 |
+
pipe = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Fonction de test du modèle
|
| 30 |
+
def chat(prompt):
|
| 31 |
+
outputs = pipe(prompt, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.9)
|
| 32 |
+
return outputs[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Interface Gradio
|
| 35 |
+
with gr.Blocks() as demo:
|
| 36 |
+
gr.Markdown("# 🐟 BRVM Finetuner (Mistral-7B)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
with gr.Tab("🚀 Entraînement"):
|
| 39 |
+
train_btn = gr.Button("Lancer l’entraînement")
|
| 40 |
+
train_output = gr.Textbox(label="Logs")
|
| 41 |
+
train_btn.click(fn=train_model, outputs=train_output)
|
| 42 |
|
| 43 |
+
with gr.Tab("💬 Tester le modèle"):
|
| 44 |
+
input_text = gr.Textbox(label="Votre question :", placeholder="Posez une question...")
|
| 45 |
+
output_text = gr.Textbox(label="Réponse du modèle")
|
| 46 |
+
submit_btn = gr.Button("Envoyer")
|
| 47 |
+
submit_btn.click(fn=chat, inputs=input_text, outputs=output_text)
|
| 48 |
|
| 49 |
+
demo.launch()
|