Spaces:
Sleeping
Sleeping
| # finetune_full.py | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer | |
| import os | |
| os.environ["OMP_NUM_THREADS"] = "8" | |
| base_model = "mistralai/Mistral-7B-Instruct-v0.3" | |
| new_model_dir = "./mistral-7b-brvm-full-finetuned" | |
| output_dir = "./results_full" | |
| # 1. Dataset | |
| dataset = load_dataset("lamekemal/brvm_finetune") | |
| # 2. Charger modèle + tokenizer en FP16 | |
| model = AutoModelForCausalLM.from_pretrained( | |
| base_model, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| ) | |
| model.config.use_cache = False | |
| model.gradient_checkpointing_enable() | |
| tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "right" | |
| # 3. Prétraitement | |
| def tokenize_function(examples): | |
| texts = [ | |
| f"Instruction: {instr}\nRéponse: {resp}" | |
| for instr, resp in zip(examples["instruction"], examples["response"]) | |
| ] | |
| return tokenizer( | |
| texts, | |
| truncation=True, | |
| padding="max_length", | |
| max_length=512, | |
| ) | |
| tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
| # 4. Arguments d’entraînement | |
| training_args = TrainingArguments( | |
| output_dir=output_dir, | |
| num_train_epochs=3, | |
| per_device_train_batch_size=4, # full finetune = VRAM lourd | |
| gradient_accumulation_steps=4, | |
| optim="adamw_torch_fused", | |
| save_steps=100, | |
| logging_steps=10, | |
| learning_rate=2e-5, | |
| fp16=True, | |
| max_grad_norm=1.0, | |
| warmup_ratio=0.03, | |
| lr_scheduler_type="cosine", | |
| report_to="tensorboard", | |
| eval_strategy="steps", | |
| eval_steps=100, | |
| save_total_limit=2, | |
| load_best_model_at_end=True, | |
| metric_for_best_model="eval_loss", | |
| ) | |
| # 5. Trainer classique (pas LoRA) | |
| trainer = Trainer( | |
| model=model, | |
| train_dataset=tokenized_datasets["train"], | |
| eval_dataset=tokenized_datasets["validation"], | |
| args=training_args, | |
| ) | |
| # 6. Entraînement | |
| trainer.train() | |
| # 7. Sauvegarde locale et push Hub | |
| trainer.save_model(new_model_dir) | |
| tokenizer.save_pretrained(new_model_dir) | |
| from huggingface_hub import HfApi | |
| api = HfApi() | |
| repo_id = "lamekemal/mistral-7b-brvm-full-finetuned" | |
| trainer.push_to_hub(repo_id) | |
| tokenizer.push_to_hub(repo_id) | |
| print(f"✅ Full fine-tune sauvegardé dans {new_model_dir} et poussé sur Hugging Face Hub") | |