Spaces:
Sleeping
Sleeping
| import torch | |
| from datasets import load_dataset | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| BitsAndBytesConfig, | |
| TrainingArguments, | |
| ) | |
| from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training | |
| from trl import SFTTrainer | |
| # 1. Configurations | |
| base_model = "mistralai/Mistral-7B-Instruct-v0.3" | |
| new_model_dir = "./mistral-7b-brvm-finetuned" | |
| output_dir = "./results" | |
| # 2. Device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"Utilisation du périphérique: {device}") | |
| if torch.cuda.is_available(): | |
| print(f"GPU: {torch.cuda.get_device_name(0)} - " | |
| f"Mémoire: {torch.cuda.get_device_properties(0).total_memory / (1024**3):.2f} GB") | |
| # 3. Dataset | |
| dataset = load_dataset("lamekemal/brvm_finetune") | |
| # 4. Quantization | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| bnb_4bit_use_double_quant=False, | |
| ) | |
| # 5. Charger modèle + tokenizer | |
| model = AutoModelForCausalLM.from_pretrained( | |
| base_model, | |
| quantization_config=bnb_config, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| ) | |
| model.config.use_cache = False | |
| model = prepare_model_for_kbit_training(model) | |
| tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "right" | |
| # 6. LoRA config | |
| lora_config = LoraConfig( | |
| r=16, | |
| lora_alpha=32, | |
| target_modules=["q_proj", "k_proj", "v_proj", "o_proj", | |
| "gate_proj", "up_proj", "down_proj"], | |
| lora_dropout=0.05, | |
| bias="none", | |
| task_type="CAUSAL_LM", | |
| ) | |
| model = get_peft_model(model, lora_config) | |
| # 7. Training args | |
| training_args = TrainingArguments( | |
| output_dir=output_dir, | |
| num_train_epochs=3, | |
| per_device_train_batch_size=2, | |
| gradient_accumulation_steps=4, | |
| optim="paged_adamw_32bit", | |
| save_steps=100, | |
| logging_steps=10, | |
| learning_rate=2e-4, | |
| fp16=False, | |
| bf16=torch.cuda.is_available(), | |
| max_grad_norm=0.3, | |
| warmup_ratio=0.03, | |
| group_by_length=True, | |
| lr_scheduler_type="cosine", | |
| report_to="tensorboard", | |
| evaluation_strategy="steps", | |
| eval_steps=100, | |
| save_total_limit=2, | |
| load_best_model_at_end=True, | |
| metric_for_best_model="eval_loss", | |
| ) | |
| # 8. Trainer | |
| trainer = SFTTrainer( | |
| model=model, | |
| train_dataset=dataset["train"], | |
| eval_dataset=dataset["validation"], | |
| peft_config=lora_config, | |
| dataset_text_field="messages", # ⚠️ Vérifie bien que ton dataset a cette colonne | |
| max_seq_length=512, | |
| tokenizer=tokenizer, | |
| args=training_args, | |
| packing=False, | |
| ) | |
| # 9. Fine-tuning | |
| trainer.train() | |
| # 10. Sauvegarde locale | |
| trainer.save_model(new_model_dir) | |
| print(f"✅ Modèle LoRA sauvegardé localement dans {new_model_dir}") | |