Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,50 +6,49 @@ import numpy as np
|
|
| 6 |
import tempfile
|
| 7 |
|
| 8 |
# Load model and tokenizer
|
| 9 |
-
device = "cpu" #
|
| 10 |
model = AutoModel.from_pretrained("ai4bharat/vits_rasa_13", trust_remote_code=True).to(device)
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/vits_rasa_13", trust_remote_code=True)
|
| 12 |
|
| 13 |
-
#
|
| 14 |
LANG_SPEAKER_MAP = {
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
"san": 17, "tam": 18, "tel": 19,
|
| 19 |
-
"hin": 13 # use Marathi Male voice for Hindi (close)
|
| 20 |
}
|
| 21 |
|
| 22 |
-
# Mapping: Style (fixed default)
|
| 23 |
DEFAULT_STYLE_ID = 0 # ALEXA
|
| 24 |
|
| 25 |
-
def
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
lang = json_input["language"].lower()
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
|
|
|
| 35 |
outputs = model(inputs['input_ids'], speaker_id=speaker_id, emotion_id=DEFAULT_STYLE_ID)
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 42 |
-
sf.write(f.name, waveform, sample_rate)
|
| 43 |
-
return sample_rate, waveform
|
| 44 |
-
except Exception as e:
|
| 45 |
-
return f"Error: {str(e)}"
|
| 46 |
|
|
|
|
| 47 |
iface = gr.Interface(
|
| 48 |
-
fn=
|
| 49 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
| 50 |
outputs=gr.Audio(label="Generated Audio"),
|
| 51 |
title="VITS TTS for Indian Languages (Marathi, Hindi, Sanskrit)",
|
| 52 |
-
description="Uses ai4bharat/vits_rasa_13.
|
| 53 |
)
|
| 54 |
|
| 55 |
iface.launch()
|
|
|
|
|
|
| 6 |
import tempfile
|
| 7 |
|
| 8 |
# Load model and tokenizer
|
| 9 |
+
device = "cpu" # Change to "cuda" if you have GPU
|
| 10 |
model = AutoModel.from_pretrained("ai4bharat/vits_rasa_13", trust_remote_code=True).to(device)
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/vits_rasa_13", trust_remote_code=True)
|
| 12 |
|
| 13 |
+
# Speaker IDs for languages
|
| 14 |
LANG_SPEAKER_MAP = {
|
| 15 |
+
"mar": 13, # Marathi Male
|
| 16 |
+
"hin": 13, # Reuse Marathi Male for Hindi
|
| 17 |
+
"san": 17 # Sanskrit Male
|
|
|
|
|
|
|
| 18 |
}
|
| 19 |
|
|
|
|
| 20 |
DEFAULT_STYLE_ID = 0 # ALEXA
|
| 21 |
|
| 22 |
+
def generate_audio(text, language):
|
| 23 |
+
if not text.strip():
|
| 24 |
+
return "Error: Text cannot be empty."
|
|
|
|
| 25 |
|
| 26 |
+
speaker_id = LANG_SPEAKER_MAP.get(language.lower())
|
| 27 |
+
if speaker_id is None:
|
| 28 |
+
return f"Unsupported language: {language}"
|
| 29 |
|
| 30 |
+
inputs = tokenizer(text=text, return_tensors="pt").to(device)
|
| 31 |
+
with torch.no_grad():
|
| 32 |
outputs = model(inputs['input_ids'], speaker_id=speaker_id, emotion_id=DEFAULT_STYLE_ID)
|
| 33 |
+
waveform = outputs.waveform.squeeze().cpu().numpy()
|
| 34 |
+
sample_rate = model.config.sampling_rate
|
| 35 |
|
| 36 |
+
# Save temp audio
|
| 37 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 38 |
+
sf.write(f.name, waveform, sample_rate)
|
| 39 |
+
return sample_rate, waveform
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Gradio Interface with clean inputs
|
| 42 |
iface = gr.Interface(
|
| 43 |
+
fn=generate_audio,
|
| 44 |
+
inputs=[
|
| 45 |
+
gr.Textbox(label="Enter Text"),
|
| 46 |
+
gr.Dropdown(["mar", "hin", "san"], label="Select Language")
|
| 47 |
+
],
|
| 48 |
outputs=gr.Audio(label="Generated Audio"),
|
| 49 |
title="VITS TTS for Indian Languages (Marathi, Hindi, Sanskrit)",
|
| 50 |
+
description="Uses ai4bharat/vits_rasa_13. Enter text and select a language."
|
| 51 |
)
|
| 52 |
|
| 53 |
iface.launch()
|
| 54 |
+
|