Spaces:
Sleeping
Sleeping
| # from fastapi import FastAPI, Response | |
| # from fastapi.responses import FileResponse | |
| # from kokoro import KPipeline | |
| # import soundfile as sf | |
| # import os | |
| # import numpy as np | |
| # import torch | |
| # from huggingface_hub import InferenceClient | |
| # def llm_chat_response(text): | |
| # HF_TOKEN = os.getenv("HF_TOKEN") | |
| # client = InferenceClient(api_key=HF_TOKEN) | |
| # messages = [ | |
| # { | |
| # "role": "user", | |
| # "content": [ | |
| # { | |
| # "type": "text", | |
| # "text": text + str('describe in one line only') | |
| # } #, | |
| # # { | |
| # # "type": "image_url", | |
| # # "image_url": { | |
| # # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" | |
| # # } | |
| # # } | |
| # ] | |
| # } | |
| # ] | |
| # response_from_llama = client.chat.completions.create( | |
| # model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
| # messages=messages, | |
| # max_tokens=500) | |
| # return response_from_llama.choices[0].message['content'] | |
| # app = FastAPI() | |
| # # Initialize pipeline once at startup | |
| # pipeline = KPipeline(lang_code='a') | |
| # @app.post("/generate") | |
| # async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0): | |
| # text_reply = llm_chat_response(text) | |
| # # Generate audio | |
| # generator = pipeline( | |
| # text_reply, | |
| # voice=voice, | |
| # speed=speed, | |
| # split_pattern=r'\n+' | |
| # ) | |
| # # # Save first segment only for demo | |
| # # for i, (gs, ps, audio) in enumerate(generator): | |
| # # sf.write(f"output_{i}.wav", audio, 24000) | |
| # # return FileResponse( | |
| # # f"output_{i}.wav", | |
| # # media_type="audio/wav", | |
| # # filename="output.wav" | |
| # # ) | |
| # # return Response("No audio generated", status_code=400) | |
| # # Process only the first segment for demo | |
| # for i, (gs, ps, audio) in enumerate(generator): | |
| # # Convert PyTorch tensor to NumPy array | |
| # audio_numpy = audio.cpu().numpy() | |
| # # Convert to 16-bit PCM | |
| # # Ensure the audio is in the range [-1, 1] | |
| # audio_numpy = np.clip(audio_numpy, -1, 1) | |
| # # Convert to 16-bit signed integers | |
| # pcm_data = (audio_numpy * 32767).astype(np.int16) | |
| # # Convert to bytes (automatically uses row-major order) | |
| # raw_audio = pcm_data.tobytes() | |
| # # Return PCM data with minimal necessary headers | |
| # return Response( | |
| # content=raw_audio, | |
| # media_type="application/octet-stream", | |
| # headers={ | |
| # "Content-Disposition": f'attachment; filename="output.pcm"', | |
| # "X-Sample-Rate": "24000", | |
| # "X-Bits-Per-Sample": "16", | |
| # "X-Endianness": "little" | |
| # } | |
| # ) | |
| # return Response("No audio generated", status_code=400) | |
| from fastapi import FastAPI, Response | |
| from fastapi.responses import FileResponse | |
| from kokoro import KPipeline | |
| import soundfile as sf | |
| import os | |
| import numpy as np | |
| import torch | |
| from huggingface_hub import InferenceClient | |
| from pydantic import BaseModel | |
| import base64 | |
| from io import BytesIO | |
| from PIL import Image | |
| class TextImageRequest(BaseModel): | |
| text: str = None | |
| image_base64: str = None | |
| voice: str = "af_heart" | |
| speed: float = 1.0 | |
| def llm_chat_response(text, image_base64=None): | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| client = InferenceClient(api_key=HF_TOKEN) | |
| message_content = [ | |
| { | |
| "type": "text", | |
| "text": text + str('describe in one line only') | |
| } | |
| ] | |
| # If image_base64 is provided, add it to the message content | |
| if image_base64: | |
| # Convert base64 to PIL Image for validation | |
| try: | |
| image_bytes = base64.b64decode(image_base64) | |
| # Validate that it's a proper image | |
| Image.open(BytesIO(image_bytes)) | |
| # Add the image to message content | |
| message_content.append({ | |
| "type": "image", | |
| "image": { | |
| "data": image_base64 | |
| } | |
| }) | |
| except Exception as e: | |
| print(f"Error processing image: {e}") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": message_content | |
| } | |
| ] | |
| response_from_llama = client.chat.completions.create( | |
| model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
| messages=messages, | |
| max_tokens=500 | |
| ) | |
| return response_from_llama.choices[0].message['content'] | |
| app = FastAPI() | |
| # Initialize pipeline once at startup | |
| pipeline = KPipeline(lang_code='a') | |
| async def generate_audio(request: TextImageRequest): | |
| # If no text is provided but image is provided, use default prompt | |
| user_text = request.text | |
| if user_text is None and request.image_base64: | |
| user_text = "Describe what you see in the image" | |
| elif user_text is None: | |
| user_text = "" | |
| # Generate response using text and image if provided | |
| text_reply = llm_chat_response(user_text, request.image_base64) | |
| # Generate audio | |
| generator = pipeline( | |
| text_reply, | |
| voice=request.voice, | |
| speed=request.speed, | |
| split_pattern=r'\n+' | |
| ) | |
| # Process only the first segment for demo | |
| for i, (gs, ps, audio) in enumerate(generator): | |
| # Convert PyTorch tensor to NumPy array | |
| audio_numpy = audio.cpu().numpy() | |
| # Convert to 16-bit PCM | |
| # Ensure the audio is in the range [-1, 1] | |
| audio_numpy = np.clip(audio_numpy, -1, 1) | |
| # Convert to 16-bit signed integers | |
| pcm_data = (audio_numpy * 32767).astype(np.int16) | |
| # Convert to bytes (automatically uses row-major order) | |
| raw_audio = pcm_data.tobytes() | |
| # Return PCM data with minimal necessary headers | |
| return Response( | |
| content=raw_audio, | |
| media_type="application/octet-stream", | |
| headers={ | |
| "Content-Disposition": f'attachment; filename="output.pcm"', | |
| "X-Sample-Rate": "24000", | |
| "X-Bits-Per-Sample": "16", | |
| "X-Endianness": "little" | |
| } | |
| ) | |
| return Response("No audio generated", status_code=400) |