Spaces:
Runtime error
Runtime error
Commit
Β·
b5d5c28
1
Parent(s):
85b8db7
Add advanced option
Browse files
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from diffusers import DiffusionPipeline
|
| 4 |
import streamlit as st
|
| 5 |
from transformers import (
|
|
@@ -10,6 +12,8 @@ from transformers import (
|
|
| 10 |
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
device_dict = {"cuda": 0, "cpu": -1}
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Add language detection pipeline
|
| 15 |
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
|
@@ -30,19 +34,21 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
| 30 |
detection_pipeline=language_detection_pipeline,
|
| 31 |
translation_model=trans_model,
|
| 32 |
translation_tokenizer=trans_tokenizer,
|
| 33 |
-
|
| 34 |
-
|
| 35 |
)
|
| 36 |
|
| 37 |
-
pipe.enable_attention_slicing()
|
| 38 |
pipe = pipe.to(device)
|
| 39 |
|
| 40 |
#torch.backends.cudnn.benchmark = True
|
| 41 |
num_samples = 2
|
| 42 |
|
| 43 |
-
def infer(prompt):
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
css = """
|
| 48 |
.gradio-container {
|
|
@@ -100,7 +106,6 @@ css = """
|
|
| 100 |
border-radius: 14px !important;
|
| 101 |
}
|
| 102 |
#advanced-options {
|
| 103 |
-
display: none;
|
| 104 |
margin-bottom: 20px;
|
| 105 |
}
|
| 106 |
.footer {
|
|
@@ -167,13 +172,19 @@ block = gr.Blocks(css=css)
|
|
| 167 |
|
| 168 |
examples = [
|
| 169 |
[
|
| 170 |
-
'Una casa en la playa en un atardecer lluvioso'
|
|
|
|
|
|
|
| 171 |
],
|
| 172 |
[
|
| 173 |
-
'Ein Hund, der Orange isst'
|
|
|
|
|
|
|
| 174 |
],
|
| 175 |
[
|
| 176 |
-
"Photo d'un restaurant parisien"
|
|
|
|
|
|
|
| 177 |
],
|
| 178 |
]
|
| 179 |
|
|
@@ -216,14 +227,20 @@ with block as demo:
|
|
| 216 |
)
|
| 217 |
|
| 218 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="generated_id").style(
|
| 219 |
-
grid=[
|
| 220 |
)
|
| 221 |
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
ex.dataset.headers = [""]
|
| 224 |
|
| 225 |
-
text.submit(infer, inputs=[text], outputs=gallery)
|
| 226 |
-
btn.click(infer, inputs=[text], outputs=gallery)
|
| 227 |
|
| 228 |
gr.HTML(
|
| 229 |
"""
|
|
|
|
| 1 |
+
from contextlib import nullcontext
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from torch import autocast
|
| 5 |
from diffusers import DiffusionPipeline
|
| 6 |
import streamlit as st
|
| 7 |
from transformers import (
|
|
|
|
| 12 |
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
device_dict = {"cuda": 0, "cpu": -1}
|
| 15 |
+
context = autocast if device == "cuda" else nullcontext
|
| 16 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 17 |
|
| 18 |
# Add language detection pipeline
|
| 19 |
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
|
|
|
| 34 |
detection_pipeline=language_detection_pipeline,
|
| 35 |
translation_model=trans_model,
|
| 36 |
translation_tokenizer=trans_tokenizer,
|
| 37 |
+
revision="fp16",
|
| 38 |
+
torch_dtype=dtype,
|
| 39 |
)
|
| 40 |
|
|
|
|
| 41 |
pipe = pipe.to(device)
|
| 42 |
|
| 43 |
#torch.backends.cudnn.benchmark = True
|
| 44 |
num_samples = 2
|
| 45 |
|
| 46 |
+
def infer(prompt, scale, steps):
|
| 47 |
+
|
| 48 |
+
with context("cuda"):
|
| 49 |
+
images = pipe(num_samples*[prompt], guidance_scale=scale, num_inference_steps=steps).images
|
| 50 |
+
|
| 51 |
+
return images
|
| 52 |
|
| 53 |
css = """
|
| 54 |
.gradio-container {
|
|
|
|
| 106 |
border-radius: 14px !important;
|
| 107 |
}
|
| 108 |
#advanced-options {
|
|
|
|
| 109 |
margin-bottom: 20px;
|
| 110 |
}
|
| 111 |
.footer {
|
|
|
|
| 172 |
|
| 173 |
examples = [
|
| 174 |
[
|
| 175 |
+
'Una casa en la playa en un atardecer lluvioso',
|
| 176 |
+
45,
|
| 177 |
+
7.5,
|
| 178 |
],
|
| 179 |
[
|
| 180 |
+
'Ein Hund, der Orange isst',
|
| 181 |
+
45,
|
| 182 |
+
7.5,
|
| 183 |
],
|
| 184 |
[
|
| 185 |
+
"Photo d'un restaurant parisien",
|
| 186 |
+
45,
|
| 187 |
+
7.5,
|
| 188 |
],
|
| 189 |
]
|
| 190 |
|
|
|
|
| 227 |
)
|
| 228 |
|
| 229 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="generated_id").style(
|
| 230 |
+
grid=[1], height="auto"
|
| 231 |
)
|
| 232 |
|
| 233 |
+
with gr.Row(elem_id="advanced-options"):
|
| 234 |
+
steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=45, step=5)
|
| 235 |
+
scale = gr.Slider(
|
| 236 |
+
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, steps, scale], outputs=gallery, cache_examples=False)
|
| 240 |
ex.dataset.headers = [""]
|
| 241 |
|
| 242 |
+
text.submit(infer, inputs=[text, steps, scale], outputs=gallery)
|
| 243 |
+
btn.click(infer, inputs=[text, steps, scale], outputs=gallery)
|
| 244 |
|
| 245 |
gr.HTML(
|
| 246 |
"""
|