Spaces:
Runtime error
Runtime error
train
Browse files- app.ipynb +6 -5
- train.ipynb +64 -21
app.ipynb
CHANGED
|
@@ -70,9 +70,7 @@
|
|
| 70 |
"cell_type": "code",
|
| 71 |
"execution_count": 5,
|
| 72 |
"id": "6e0bf9da",
|
| 73 |
-
"metadata": {
|
| 74 |
-
"scrolled": false
|
| 75 |
-
},
|
| 76 |
"outputs": [
|
| 77 |
{
|
| 78 |
"data": {
|
|
@@ -322,7 +320,10 @@
|
|
| 322 |
"cell_type": "code",
|
| 323 |
"execution_count": 16,
|
| 324 |
"id": "82774c08",
|
| 325 |
-
"metadata": {
|
|
|
|
|
|
|
|
|
|
| 326 |
"outputs": [
|
| 327 |
{
|
| 328 |
"data": {
|
|
@@ -791,7 +792,7 @@
|
|
| 791 |
"name": "python",
|
| 792 |
"nbconvert_exporter": "python",
|
| 793 |
"pygments_lexer": "ipython3",
|
| 794 |
-
"version": "3.
|
| 795 |
},
|
| 796 |
"toc": {
|
| 797 |
"base_numbering": 1,
|
|
|
|
| 70 |
"cell_type": "code",
|
| 71 |
"execution_count": 5,
|
| 72 |
"id": "6e0bf9da",
|
| 73 |
+
"metadata": {},
|
|
|
|
|
|
|
| 74 |
"outputs": [
|
| 75 |
{
|
| 76 |
"data": {
|
|
|
|
| 320 |
"cell_type": "code",
|
| 321 |
"execution_count": 16,
|
| 322 |
"id": "82774c08",
|
| 323 |
+
"metadata": {
|
| 324 |
+
"scrolled": true,
|
| 325 |
+
"tags": []
|
| 326 |
+
},
|
| 327 |
"outputs": [
|
| 328 |
{
|
| 329 |
"data": {
|
|
|
|
| 792 |
"name": "python",
|
| 793 |
"nbconvert_exporter": "python",
|
| 794 |
"pygments_lexer": "ipython3",
|
| 795 |
+
"version": "3.7.11"
|
| 796 |
},
|
| 797 |
"toc": {
|
| 798 |
"base_numbering": 1,
|
train.ipynb
CHANGED
|
@@ -10,7 +10,7 @@
|
|
| 10 |
},
|
| 11 |
{
|
| 12 |
"cell_type": "code",
|
| 13 |
-
"execution_count":
|
| 14 |
"id": "44eb0ad3",
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
|
@@ -21,7 +21,7 @@
|
|
| 21 |
},
|
| 22 |
{
|
| 23 |
"cell_type": "code",
|
| 24 |
-
"execution_count":
|
| 25 |
"id": "d838c0b3",
|
| 26 |
"metadata": {},
|
| 27 |
"outputs": [],
|
|
@@ -145,19 +145,62 @@
|
|
| 145 |
"learn.fine_tune(3)"
|
| 146 |
]
|
| 147 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
{
|
| 149 |
"cell_type": "code",
|
| 150 |
"execution_count": 6,
|
| 151 |
-
"id": "
|
| 152 |
"metadata": {},
|
| 153 |
"outputs": [
|
| 154 |
{
|
| 155 |
-
"
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
{
|
| 162 |
"data": {
|
| 163 |
"text/html": [
|
|
@@ -174,9 +217,9 @@
|
|
| 174 |
" <tbody>\n",
|
| 175 |
" <tr>\n",
|
| 176 |
" <td>0</td>\n",
|
| 177 |
-
" <td>1.
|
| 178 |
-
" <td>0.
|
| 179 |
-
" <td>0.
|
| 180 |
" <td>00:24</td>\n",
|
| 181 |
" </tr>\n",
|
| 182 |
" </tbody>\n",
|
|
@@ -205,23 +248,23 @@
|
|
| 205 |
" <tbody>\n",
|
| 206 |
" <tr>\n",
|
| 207 |
" <td>0</td>\n",
|
| 208 |
-
" <td>0.
|
| 209 |
-
" <td>0.
|
| 210 |
-
" <td>0.
|
| 211 |
" <td>00:27</td>\n",
|
| 212 |
" </tr>\n",
|
| 213 |
" <tr>\n",
|
| 214 |
" <td>1</td>\n",
|
| 215 |
-
" <td>0.
|
| 216 |
-
" <td>0.
|
| 217 |
-
" <td>0.
|
| 218 |
" <td>00:27</td>\n",
|
| 219 |
" </tr>\n",
|
| 220 |
" <tr>\n",
|
| 221 |
" <td>2</td>\n",
|
| 222 |
-
" <td>0.
|
| 223 |
-
" <td>0.
|
| 224 |
-
" <td>0.
|
| 225 |
" <td>00:27</td>\n",
|
| 226 |
" </tr>\n",
|
| 227 |
" </tbody>\n",
|
|
|
|
| 10 |
},
|
| 11 |
{
|
| 12 |
"cell_type": "code",
|
| 13 |
+
"execution_count": 1,
|
| 14 |
"id": "44eb0ad3",
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
|
|
|
| 21 |
},
|
| 22 |
{
|
| 23 |
"cell_type": "code",
|
| 24 |
+
"execution_count": 7,
|
| 25 |
"id": "d838c0b3",
|
| 26 |
"metadata": {},
|
| 27 |
"outputs": [],
|
|
|
|
| 145 |
"learn.fine_tune(3)"
|
| 146 |
]
|
| 147 |
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "markdown",
|
| 150 |
+
"id": "477ef53a-4b5c-4a07-81c2-95b8e7397cac",
|
| 151 |
+
"metadata": {},
|
| 152 |
+
"source": [
|
| 153 |
+
"We could try a better model, based on [this analysis](https://www.kaggle.com/code/jhoward/which-image-models-are-best/). The convnext models work great!"
|
| 154 |
+
]
|
| 155 |
+
},
|
| 156 |
{
|
| 157 |
"cell_type": "code",
|
| 158 |
"execution_count": 6,
|
| 159 |
+
"id": "6ee4197a-25be-48ac-a167-903bec5186b1",
|
| 160 |
"metadata": {},
|
| 161 |
"outputs": [
|
| 162 |
{
|
| 163 |
+
"data": {
|
| 164 |
+
"text/plain": [
|
| 165 |
+
"['convnext_base',\n",
|
| 166 |
+
" 'convnext_base_384_in22ft1k',\n",
|
| 167 |
+
" 'convnext_base_in22ft1k',\n",
|
| 168 |
+
" 'convnext_base_in22k',\n",
|
| 169 |
+
" 'convnext_large',\n",
|
| 170 |
+
" 'convnext_large_384_in22ft1k',\n",
|
| 171 |
+
" 'convnext_large_in22ft1k',\n",
|
| 172 |
+
" 'convnext_large_in22k',\n",
|
| 173 |
+
" 'convnext_nano_hnf',\n",
|
| 174 |
+
" 'convnext_small',\n",
|
| 175 |
+
" 'convnext_small_384_in22ft1k',\n",
|
| 176 |
+
" 'convnext_small_in22ft1k',\n",
|
| 177 |
+
" 'convnext_small_in22k',\n",
|
| 178 |
+
" 'convnext_tiny',\n",
|
| 179 |
+
" 'convnext_tiny_384_in22ft1k',\n",
|
| 180 |
+
" 'convnext_tiny_hnf',\n",
|
| 181 |
+
" 'convnext_tiny_hnfd',\n",
|
| 182 |
+
" 'convnext_tiny_in22ft1k',\n",
|
| 183 |
+
" 'convnext_tiny_in22k',\n",
|
| 184 |
+
" 'convnext_xlarge_384_in22ft1k',\n",
|
| 185 |
+
" 'convnext_xlarge_in22ft1k',\n",
|
| 186 |
+
" 'convnext_xlarge_in22k']"
|
| 187 |
+
]
|
| 188 |
+
},
|
| 189 |
+
"execution_count": 6,
|
| 190 |
+
"metadata": {},
|
| 191 |
+
"output_type": "execute_result"
|
| 192 |
+
}
|
| 193 |
+
],
|
| 194 |
+
"source": [
|
| 195 |
+
"timm.list_models('convnext*')"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": 9,
|
| 201 |
+
"id": "67d34f88-a580-48b9-9b42-e9d0c7e3e870",
|
| 202 |
+
"metadata": {},
|
| 203 |
+
"outputs": [
|
| 204 |
{
|
| 205 |
"data": {
|
| 206 |
"text/html": [
|
|
|
|
| 217 |
" <tbody>\n",
|
| 218 |
" <tr>\n",
|
| 219 |
" <td>0</td>\n",
|
| 220 |
+
" <td>1.113290</td>\n",
|
| 221 |
+
" <td>0.253742</td>\n",
|
| 222 |
+
" <td>0.087957</td>\n",
|
| 223 |
" <td>00:24</td>\n",
|
| 224 |
" </tr>\n",
|
| 225 |
" </tbody>\n",
|
|
|
|
| 248 |
" <tbody>\n",
|
| 249 |
" <tr>\n",
|
| 250 |
" <td>0</td>\n",
|
| 251 |
+
" <td>0.293625</td>\n",
|
| 252 |
+
" <td>0.205537</td>\n",
|
| 253 |
+
" <td>0.067659</td>\n",
|
| 254 |
" <td>00:27</td>\n",
|
| 255 |
" </tr>\n",
|
| 256 |
" <tr>\n",
|
| 257 |
" <td>1</td>\n",
|
| 258 |
+
" <td>0.195267</td>\n",
|
| 259 |
+
" <td>0.185939</td>\n",
|
| 260 |
+
" <td>0.055480</td>\n",
|
| 261 |
" <td>00:27</td>\n",
|
| 262 |
" </tr>\n",
|
| 263 |
" <tr>\n",
|
| 264 |
" <td>2</td>\n",
|
| 265 |
+
" <td>0.123829</td>\n",
|
| 266 |
+
" <td>0.172681</td>\n",
|
| 267 |
+
" <td>0.055480</td>\n",
|
| 268 |
" <td>00:27</td>\n",
|
| 269 |
" </tr>\n",
|
| 270 |
" </tbody>\n",
|