Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import logging | |
| tokenizer = AutoTokenizer.from_pretrained("bitext/Mistral-7B-Customer-Support") | |
| model = AutoModelForCausalLM.from_pretrained("bitext/Mistral-7B-Customer-Support").to('cuda') | |
| def query_huggingface(prompt): | |
| try: | |
| messages = [ | |
| {"role": "user", "content": prompt}, | |
| ] | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to('cuda') | |
| outputs = model.generate(**inputs, max_new_tokens=100) | |
| response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True) | |
| return response.strip() | |
| except Exception as e: | |
| logging.error(f"Local Mistral-7B-Customer-Support inference failed: {e}") | |
| return "Sorry, I'm having trouble responding right now." |