import gradio as gr import numpy as np import random # import spaces import torch from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images # Importar os para la variable de entorno, aunque no se use directamente aquí, es buena práctica import os dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Usando el modelo más ligero de la lista blanca: FLUX.1-schnell-4bit # Nota: La lógica de FLUX es compleja, mantendré la estructura original pero con el modelo más ligero. try: # Intentar cargar el modelo más ligero de la lista blanca model_id = "black-forest-labs/FLUX.1-schnell-4bit" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device) torch.cuda.empty_cache() except Exception as e: # Si falla, se usa un placeholder para que la interfaz Gradio se cargue print(f"Error al cargar el modelo FLUX: {e}") pipe = None MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 512 # Ajustado a un tamaño más seguro # La función infer debe ser modificada para ser compatible con la nueva Pipeline # y para manejar el caso de que el modelo no se haya cargado. def infer(prompt, seed=42, randomize_seed=False, width=512, height=512, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if pipe is None: return gr.Error("El modelo FLUX no pudo cargarse debido a limitaciones de recursos."), seed if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # La llamada original usaba una función auxiliar que no tenemos (flux_pipe_call_that_returns_an_iterable_of_images) # Usaremos la llamada estándar de DiffusionPipeline. # Nota: La pipeline de FLUX puede requerir parámetros específicos. # Si la llamada estándar falla, esto requerirá una revisión más profunda. try: # Usamos la llamada estándar de DiffusionPipeline image = pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", ).images[0] return image, seed except Exception as e: return gr.Error(f"Error durante la inferencia: {e}"), seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch()