import gradio as gr import torch from torchvision import models, transforms from safetensors.torch import load_file from huggingface_hub import hf_hub_download from PIL import Image import numpy as np from skimage.transform import resize from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_grad_cam.utils.image import show_cam_on_image # Constants REPO_ID = "itsomk/chexpert-densenet121" FILENAME = "pytorch_model.safetensors" # Model Definition class DenseNet121_CheXpert(torch.nn.Module): def __init__(self, num_labels=14, pretrained=None): super().__init__() self.densenet = models.densenet121(weights=pretrained) num_features = self.densenet.classifier.in_features self.densenet.classifier = torch.nn.Linear(num_features, num_labels) def forward(self, x): return self.densenet(x) # Labels LABELS = [ "No Finding", "Enlarged Cardiomediastinum", "Cardiomegaly", "Lung Opacity", "Lung Lesion", "Edema", "Consolidation", "Pneumonia", "Atelectasis", "Pneumothorax", "Pleural Effusion", "Pleural Other", "Fracture", "Support Devices" ] # Preprocessing preprocess = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Load model print("Loading model...") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") local_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME) state = load_file(local_path) model = DenseNet121_CheXpert(num_labels=14, pretrained=None) model.load_state_dict(state, strict=False) model.to(device) model.eval() print(f"Model loaded successfully on {device}") def predict(image, threshold): """Generate predictions and Grad-CAM visualizations""" if image is None: return None, None, "Please upload an X-ray image" try: # Convert to PIL Image if isinstance(image, np.ndarray): img = Image.fromarray(image).convert("RGB") else: img = image.convert("RGB") # Preprocess img_tensor = preprocess(img).unsqueeze(0).to(device) rgb_img = np.array(img.resize((224, 224)), dtype=np.float32) / 255.0 # Get predictions with torch.no_grad(): logits = model(img_tensor) probs = torch.sigmoid(logits).squeeze().cpu().numpy() # Setup Grad-CAM target_layer = model.densenet.features.denseblock4 cam = GradCAM(model=model, target_layers=[target_layer]) # Generate visualizations for conditions above threshold gradcam_images = [] detected_conditions = [] for i, prob in enumerate(probs): if prob > threshold: label = LABELS[i] targets = [ClassifierOutputTarget(i)] grayscale_cam = cam(input_tensor=img_tensor, targets=targets) grayscale_cam = grayscale_cam[0, :] resized_rgb_img = resize(rgb_img, grayscale_cam.shape, anti_aliasing=True) cam_image = show_cam_on_image(resized_rgb_img, grayscale_cam, use_rgb=True) gradcam_images.append(cam_image) detected_conditions.append(f"**{label}**: {prob:.4f}") # Create summary text all_predictions = "\n".join([f"{LABELS[i]}: {prob:.4f}" for i, prob in enumerate(probs)]) if detected_conditions: summary = f"## Detected Conditions (>{threshold}):\n" + "\n".join(detected_conditions) summary += f"\n\n## All Predictions:\n{all_predictions}" # Return first Grad-CAM image and original image return gradcam_images[0], img, summary else: summary = f"No conditions detected above threshold {threshold}\n\n## All Predictions:\n{all_predictions}" return None, img, summary except Exception as e: return None, None, f"Error: {str(e)}" # Create Gradio interface with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """ # 🩻 X-Ray Grad-CAM Visualization Upload a chest X-ray image to analyze potential conditions using DenseNet121 with Grad-CAM visualization. **Model**: [itsomk/chexpert-densenet121](https://huggingface.co/itsomk/chexpert-densenet121) """ ) with gr.Row(): with gr.Column(): input_image = gr.Image(label="Upload X-Ray Image", type="pil") threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Prediction Threshold" ) analyze_btn = gr.Button("🔍 Analyze X-Ray", variant="primary", size="lg") with gr.Column(): output_gradcam = gr.Image(label="Grad-CAM Visualization") output_image = gr.Image(label="Original Image") with gr.Row(): output_text = gr.Markdown(label="Analysis Results") # Examples gr.Markdown("### 📋 Instructions:") gr.Markdown( """ 1. Upload a chest X-ray image (JPG, PNG) 2. Adjust the prediction threshold if needed (default: 0.5) 3. Click 'Analyze X-Ray' to see results 4. View detected conditions with Grad-CAM heatmaps """ ) # Connect components analyze_btn.click( fn=predict, inputs=[input_image, threshold], outputs=[output_gradcam, output_image, output_text] ) if __name__ == "__main__": demo.launch()