Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,6 @@ from PIL import Image
|
|
| 13 |
def load_results():
|
| 14 |
# Get the directory of the current file
|
| 15 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 16 |
-
# Construct the path to the JSON file (assumes file is stored in "files/aragen_v1_results.json")
|
| 17 |
results_file = os.path.join(current_dir, "files", "aragen_v1_results.json")
|
| 18 |
with open(results_file, "r") as f:
|
| 19 |
data = json.load(f)
|
|
@@ -75,7 +74,6 @@ def generate_heatmap_image(model_entry):
|
|
| 75 |
image = Image.open(buf).convert("RGB")
|
| 76 |
|
| 77 |
# Resize the image to a reasonable fixed size for the gallery
|
| 78 |
-
# This helps maintain consistency and prevent oversized images
|
| 79 |
max_size = (800, 600)
|
| 80 |
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
| 81 |
|
|
@@ -103,12 +101,18 @@ with gr.Blocks(css="""
|
|
| 103 |
object-fit: contain !important;
|
| 104 |
}
|
| 105 |
""") as demo:
|
| 106 |
-
gr.Markdown("
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
with gr.Row():
|
| 110 |
default_models = ["silma-ai/SILMA-9B-Instruct-v1.0", "google/gemma-2-9b-it"]
|
| 111 |
-
model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=default_models)
|
| 112 |
|
| 113 |
generate_btn = gr.Button("Generate Heatmaps")
|
| 114 |
|
|
@@ -122,112 +126,4 @@ with gr.Blocks(css="""
|
|
| 122 |
|
| 123 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
| 124 |
|
| 125 |
-
# Launch the Gradio app
|
| 126 |
demo.launch()
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# import gradio as gr
|
| 130 |
-
# import json
|
| 131 |
-
# import os
|
| 132 |
-
# import numpy as np
|
| 133 |
-
# import matplotlib.pyplot as plt
|
| 134 |
-
# import seaborn as sns
|
| 135 |
-
# from io import BytesIO
|
| 136 |
-
# from PIL import Image
|
| 137 |
-
|
| 138 |
-
# # -------------------------------
|
| 139 |
-
# # 1. Load Results from Local File
|
| 140 |
-
# # -------------------------------
|
| 141 |
-
# def load_results():
|
| 142 |
-
# # Get the directory of the current file
|
| 143 |
-
# current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 144 |
-
# # Construct the path to the JSON file (assumes file is stored in "files/aragen_v1_results.json")
|
| 145 |
-
# results_file = os.path.join(current_dir, "files", "aragen_v1_results.json")
|
| 146 |
-
# with open(results_file, "r") as f:
|
| 147 |
-
# data = json.load(f)
|
| 148 |
-
# # Filter out any non-model entries (e.g., timestamp entries)
|
| 149 |
-
# model_data = [entry for entry in data if "Meta" in entry]
|
| 150 |
-
# return model_data
|
| 151 |
-
|
| 152 |
-
# # Load the JSON data once when the app starts
|
| 153 |
-
# DATA = load_results()
|
| 154 |
-
|
| 155 |
-
# # Extract model names for the dropdown from the JSON "Meta" field
|
| 156 |
-
# def get_model_names(data):
|
| 157 |
-
# model_names = [entry["Meta"]["Model Name"] for entry in data]
|
| 158 |
-
# return model_names
|
| 159 |
-
|
| 160 |
-
# MODEL_NAMES = get_model_names(DATA)
|
| 161 |
-
|
| 162 |
-
# # -------------------------------
|
| 163 |
-
# # 2. Define Metrics and Heatmap Generation Functions
|
| 164 |
-
# # -------------------------------
|
| 165 |
-
# # Define the six metrics in the desired order.
|
| 166 |
-
# METRICS = ["Correctness", "Completeness", "Conciseness", "Helpfulness", "Honesty", "Harmlessness"]
|
| 167 |
-
|
| 168 |
-
# def generate_heatmap_image(model_entry):
|
| 169 |
-
# """
|
| 170 |
-
# For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
|
| 171 |
-
# using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
|
| 172 |
-
# """
|
| 173 |
-
# scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
|
| 174 |
-
# # Create a vector with the metrics in the defined order.
|
| 175 |
-
# v = np.array([scores[m] for m in METRICS])
|
| 176 |
-
# # Compute the 6x6 similarity matrix.
|
| 177 |
-
# matrix = 1 - np.abs(np.subtract.outer(v, v))
|
| 178 |
-
# # Create a mask for the upper triangle (keeping the diagonal visible).
|
| 179 |
-
# mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
|
| 180 |
-
|
| 181 |
-
# plt.figure(figsize=(6, 5))
|
| 182 |
-
# sns.heatmap(matrix,
|
| 183 |
-
# mask=mask,
|
| 184 |
-
# annot=True,
|
| 185 |
-
# fmt=".2f",
|
| 186 |
-
# cmap="viridis",
|
| 187 |
-
# xticklabels=METRICS,
|
| 188 |
-
# yticklabels=METRICS,
|
| 189 |
-
# cbar_kws={"label": "Similarity"})
|
| 190 |
-
# plt.title(f"Confusion Matrix for Model: {model_entry['Meta']['Model Name']}")
|
| 191 |
-
# plt.xlabel("Metrics")
|
| 192 |
-
# plt.ylabel("Metrics")
|
| 193 |
-
# plt.tight_layout()
|
| 194 |
-
|
| 195 |
-
# # Save the plot to a bytes buffer.
|
| 196 |
-
# buf = BytesIO()
|
| 197 |
-
# plt.savefig(buf, format="png")
|
| 198 |
-
# plt.close()
|
| 199 |
-
# buf.seek(0)
|
| 200 |
-
# # Convert the buffer into a PIL Image.
|
| 201 |
-
# image = Image.open(buf).convert("RGB")
|
| 202 |
-
# return image
|
| 203 |
-
|
| 204 |
-
# def generate_heatmaps(selected_model_names):
|
| 205 |
-
# """
|
| 206 |
-
# Filter the global DATA for entries matching the selected model names,
|
| 207 |
-
# generate a heatmap for each, and return a list of PIL images.
|
| 208 |
-
# """
|
| 209 |
-
# filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
|
| 210 |
-
# images = []
|
| 211 |
-
# for entry in filtered_entries:
|
| 212 |
-
# img = generate_heatmap_image(entry)
|
| 213 |
-
# images.append(img)
|
| 214 |
-
# return images
|
| 215 |
-
|
| 216 |
-
# # -------------------------------
|
| 217 |
-
# # 3. Build the Gradio Interface
|
| 218 |
-
# # -------------------------------
|
| 219 |
-
# with gr.Blocks() as demo:
|
| 220 |
-
# gr.Markdown("## 3C3H Heatmap Generator")
|
| 221 |
-
# gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
|
| 222 |
-
|
| 223 |
-
# with gr.Row():
|
| 224 |
-
# model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=MODEL_NAMES[:3])
|
| 225 |
-
|
| 226 |
-
# generate_btn = gr.Button("Generate Heatmaps")
|
| 227 |
-
# # Use the 'columns' parameter to set a grid layout in the gallery.
|
| 228 |
-
# gallery = gr.Gallery(label="Heatmaps", columns=2)
|
| 229 |
-
|
| 230 |
-
# generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
| 231 |
-
|
| 232 |
-
# # Launch the Gradio app
|
| 233 |
-
# demo.launch()
|
|
|
|
| 13 |
def load_results():
|
| 14 |
# Get the directory of the current file
|
| 15 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
| 16 |
results_file = os.path.join(current_dir, "files", "aragen_v1_results.json")
|
| 17 |
with open(results_file, "r") as f:
|
| 18 |
data = json.load(f)
|
|
|
|
| 74 |
image = Image.open(buf).convert("RGB")
|
| 75 |
|
| 76 |
# Resize the image to a reasonable fixed size for the gallery
|
|
|
|
| 77 |
max_size = (800, 600)
|
| 78 |
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
| 79 |
|
|
|
|
| 101 |
object-fit: contain !important;
|
| 102 |
}
|
| 103 |
""") as demo:
|
| 104 |
+
gr.Markdown("""
|
| 105 |
+
<center>
|
| 106 |
+
<br></br>
|
| 107 |
+
<h1>3C3H Heatmap Generator</h1>
|
| 108 |
+
<br></br>
|
| 109 |
+
</center>
|
| 110 |
+
""")
|
| 111 |
+
gr.Markdown("<center>Select the models you want to compare and generate their heatmaps below.</center>")
|
| 112 |
|
| 113 |
with gr.Row():
|
| 114 |
default_models = ["silma-ai/SILMA-9B-Instruct-v1.0", "google/gemma-2-9b-it"]
|
| 115 |
+
model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=default_models)
|
| 116 |
|
| 117 |
generate_btn = gr.Button("Generate Heatmaps")
|
| 118 |
|
|
|
|
| 126 |
|
| 127 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
| 128 |
|
|
|
|
| 129 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|