import torch from torch import nn from attention import SelfAttention from torch.nn import functional as F class VAE_ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.grpnorm_1=nn.GroupNorm(32, in_channels) self.conv_1=nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.grpnorm_2=nn.GroupNorm(32, out_channels) self.conv_2=nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) if in_channels == out_channels: self.residual_layer=nn.Identity() else: self.residual_layer=nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) def forward(self, x): residue=x x=self.grpnorm_1(x) x=F.silu(x) x=self.conv_1(x) x=self.grpnorm_2(x) x=F.silu(x) x=self.conv_2(x) return x+self.residual_layer(residue) class VAE_AttentionBlock(nn.Module): def __init__(self, channels): super().__init__() self.grpnorm=nn.GroupNorm(32, channels) self.attention=SelfAttention(1, channels) def forward(self, x: torch.Tensor) -> torch.Tensor: # x: (Batch_Size, Features, Height, Width) residue=x # (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width) x=self.grpnorm(x) n, c, h, w=x.shape # (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height * Width) x=x.view((n,c,h*w)) # (Batch_Size, Features, Height * Width) -> (Batch_Size, Height * Width, Features) x=x.transpose(-1, -2) # (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x=self.attention(x) # (Batch_Size, Height * Width, Features) -> (Batch_Size, Features, Height * Width) x=x.transpose(-1, -2) # (Batch_Size, Features, Height , Width) x=x.view((n, c, h, w)) x+=residue return x class VAE_Decoder(nn.Sequential): def __init__(self): super().__init__( nn.Conv2d(4, 4, kernel_size=1, padding=0), nn.Conv2d(4, 512, kernel_size=3, padding=1), VAE_ResidualBlock(512, 512), VAE_AttentionBlock(512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), nn.Upsample(scale_factor=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), nn.Upsample(scale_factor=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), VAE_ResidualBlock(512, 256), VAE_ResidualBlock(256, 256), VAE_ResidualBlock(256, 256), nn.Upsample(scale_factor=2), nn.Conv2d(256, 256, kernel_size=3, padding=1), VAE_ResidualBlock(256, 128), VAE_ResidualBlock(128, 128), VAE_ResidualBlock(128, 128), nn.GroupNorm(32, 128), nn.SiLU(), nn.Conv2d(128, 3, kernel_size=3, padding=1), ) def forward(self, x): x/=0.18215 for module in self: x=module(x) return x if __name__ == "__main__": model = VAE_Decoder() model.eval() # Create a dummy input tensor: (batch_size=1, channels=4, height=16, width=16) x = torch.randn(1, 4, 8, 8) with torch.no_grad(): output = model(x) print("Input shape :", x.shape) print("Output shape:", output.shape)