File size: 109,106 Bytes
4d38ee1
 
 
 
8a3c22d
4d38ee1
 
 
 
 
 
 
 
8a3c22d
 
 
 
 
 
4d38ee1
 
 
 
 
 
 
 
 
8a3c22d
4d38ee1
 
 
 
 
 
 
8a3c22d
4d38ee1
 
 
 
 
 
 
 
 
8a3c22d
4d38ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3c22d
4d38ee1
 
 
 
 
 
 
8a3c22d
 
 
4d38ee1
 
8a3c22d
4d38ee1
 
8a3c22d
 
 
 
4d38ee1
 
 
 
8a3c22d
4d38ee1
8a3c22d
4d38ee1
 
 
 
 
 
 
 
 
 
8a3c22d
4d38ee1
 
 
 
 
 
 
 
8a3c22d
 
 
 
4d38ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3c22d
4d38ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3c22d
 
 
 
4d38ee1
 
 
8a3c22d
 
4d38ee1
 
 
8a3c22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d38ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3c22d
4d38ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "81e4a1db",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Cloning into 'stable-diffusion'...\n",
      "remote: Enumerating objects: 64, done.\u001b[K\n",
      "remote: Counting objects: 100% (64/64), done.\u001b[K\n",
      "remote: Compressing objects: 100% (50/50), done.\u001b[K\n",
      "remote: Total 64 (delta 21), reused 56 (delta 14), pack-reused 0 (from 0)\u001b[K\n",
      "Receiving objects: 100% (64/64), 4.94 MiB | 4.07 MiB/s, done.\n",
      "Resolving deltas: 100% (21/21), done.\n"
     ]
    }
   ],
   "source": [
    "!git clone -b CatVTON https://github.com/Harsh-Kesharwani/stable-diffusion.git"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "9c89e320",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/kaggle/working/stable-diffusion/stable-diffusion\n"
     ]
    }
   ],
   "source": [
    "cd stable-diffusion/"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "8b304af3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Already up to date.\n"
     ]
    }
   ],
   "source": [
    "!git pull"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "ff8b706c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2025-06-11 17:24:50--  https://huggingface.co/sd-legacy/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt\n",
      "Resolving huggingface.co (huggingface.co)... 3.169.137.119, 3.169.137.111, 3.169.137.5, ...\n",
      "Connecting to huggingface.co (huggingface.co)|3.169.137.119|:443... connected.\n",
      "HTTP request sent, awaiting response... 307 Temporary Redirect\n",
      "Location: /stable-diffusion-v1-5/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt [following]\n",
      "--2025-06-11 17:24:51--  https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt\n",
      "Reusing existing connection to huggingface.co:443.\n",
      "HTTP request sent, awaiting response... 302 Found\n",
      "Location: https://cdn-lfs.hf.co/repos/f6/56/f656f0fa3b8a40ac76d297fa2a4b00f981e8eb1261963460764e7dd3b35ec97f/c6bbc15e3224e6973459ba78de4998b80b50112b0ae5b5c67113d56b4e366b19?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27sd-v1-5-inpainting.ckpt%3B+filename%3D%22sd-v1-5-inpainting.ckpt%22%3B&Expires=1749665471&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc0OTY2NTQ3MX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9yZXBvcy9mNi81Ni9mNjU2ZjBmYTNiOGE0MGFjNzZkMjk3ZmEyYTRiMDBmOTgxZThlYjEyNjE5NjM0NjA3NjRlN2RkM2IzNWVjOTdmL2M2YmJjMTVlMzIyNGU2OTczNDU5YmE3OGRlNDk5OGI4MGI1MDExMmIwYWU1YjVjNjcxMTNkNTZiNGUzNjZiMTk%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qIn1dfQ__&Signature=ZXutmEiKZlrjAVEWY0wBGEV3qP-fmlOKp-KUU986qmVWGbVc0yqD%7E3dI0UR00PWsggfcUgFElx8005cDkqH2n6NK-jMqh5KIjt8MEj-GhEf--WSY5OheifsHKwW04CSNMpit0sI4Noyr0vyxvGku-zOSMll6TmtGXwxsz5Y6VAzdBYMdx2Fv3CPkYgjw5ia2cBK53bkmHIEsjpDNIeEbF3Fk3ZizooRJumE-YBUAHYRs94H5AiOYMoSpTPsogKu-pfwFyuLL-ciVnUviqxju8gPtjIqAT8qhe7dKXbb2o3ppy%7E2gNsHSB2A%7Ezpuqa-dhHfVW7OZkamC6DRJKt8hHOQ__&Key-Pair-Id=K3RPWS32NSSJCE [following]\n",
      "--2025-06-11 17:24:51--  https://cdn-lfs.hf.co/repos/f6/56/f656f0fa3b8a40ac76d297fa2a4b00f981e8eb1261963460764e7dd3b35ec97f/c6bbc15e3224e6973459ba78de4998b80b50112b0ae5b5c67113d56b4e366b19?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27sd-v1-5-inpainting.ckpt%3B+filename%3D%22sd-v1-5-inpainting.ckpt%22%3B&Expires=1749665471&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc0OTY2NTQ3MX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9yZXBvcy9mNi81Ni9mNjU2ZjBmYTNiOGE0MGFjNzZkMjk3ZmEyYTRiMDBmOTgxZThlYjEyNjE5NjM0NjA3NjRlN2RkM2IzNWVjOTdmL2M2YmJjMTVlMzIyNGU2OTczNDU5YmE3OGRlNDk5OGI4MGI1MDExMmIwYWU1YjVjNjcxMTNkNTZiNGUzNjZiMTk%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qIn1dfQ__&Signature=ZXutmEiKZlrjAVEWY0wBGEV3qP-fmlOKp-KUU986qmVWGbVc0yqD%7E3dI0UR00PWsggfcUgFElx8005cDkqH2n6NK-jMqh5KIjt8MEj-GhEf--WSY5OheifsHKwW04CSNMpit0sI4Noyr0vyxvGku-zOSMll6TmtGXwxsz5Y6VAzdBYMdx2Fv3CPkYgjw5ia2cBK53bkmHIEsjpDNIeEbF3Fk3ZizooRJumE-YBUAHYRs94H5AiOYMoSpTPsogKu-pfwFyuLL-ciVnUviqxju8gPtjIqAT8qhe7dKXbb2o3ppy%7E2gNsHSB2A%7Ezpuqa-dhHfVW7OZkamC6DRJKt8hHOQ__&Key-Pair-Id=K3RPWS32NSSJCE\n",
      "Resolving cdn-lfs.hf.co (cdn-lfs.hf.co)... 3.169.121.44, 3.169.121.27, 3.169.121.78, ...\n",
      "Connecting to cdn-lfs.hf.co (cdn-lfs.hf.co)|3.169.121.44|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 4265437280 (4.0G) [binary/octet-stream]\n",
      "Saving to: ‘sd-v1-5-inpainting.ckpt’\n",
      "\n",
      "sd-v1-5-inpainting. 100%[===================>]   3.97G   401MB/s    in 9.4s    \n",
      "\n",
      "2025-06-11 17:25:00 (435 MB/s) - ‘sd-v1-5-inpainting.ckpt’ saved [4265437280/4265437280]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "!wget https://huggingface.co/sd-legacy/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "4c5198ca",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "attention.py  encoder.py\t  pipeline.py\t\t   test.ipynb\n",
      "clip.py       interface.py\t  README.md\t\t   training.ipynb\n",
      "ddpm.py       merges.txt\t  requirements.txt\t   utils.py\n",
      "decoder.py    model_converter.py  sample_dataset\t   VITON_Dataset.py\n",
      "diffusion.py  model.py\t\t  sd-v1-5-inpainting.ckpt  vocab.json\n"
     ]
    }
   ],
   "source": [
    "!ls"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9041f108",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found existing installation: gdown 5.2.0\n",
      "Uninstalling gdown-5.2.0:\n",
      "  Successfully uninstalled gdown-5.2.0\n"
     ]
    }
   ],
   "source": [
    "# !pip uninstall gdown -y"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a9c7b968",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting gdown\n",
      "  Downloading gdown-5.2.0-py3-none-any.whl.metadata (5.8 kB)\n",
      "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.11/dist-packages (from gdown) (4.13.3)\n",
      "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from gdown) (3.18.0)\n",
      "Requirement already satisfied: requests[socks] in /usr/local/lib/python3.11/dist-packages (from gdown) (2.32.3)\n",
      "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from gdown) (4.67.1)\n",
      "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.11/dist-packages (from beautifulsoup4->gdown) (2.6)\n",
      "Requirement already satisfied: typing-extensions>=4.0.0 in /usr/local/lib/python3.11/dist-packages (from beautifulsoup4->gdown) (4.13.1)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests[socks]->gdown) (3.4.1)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests[socks]->gdown) (3.10)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests[socks]->gdown) (2.3.0)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests[socks]->gdown) (2025.1.31)\n",
      "Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.11/dist-packages (from requests[socks]->gdown) (1.7.1)\n",
      "Downloading gdown-5.2.0-py3-none-any.whl (18 kB)\n",
      "Installing collected packages: gdown\n",
      "Successfully installed gdown-5.2.0\n"
     ]
    }
   ],
   "source": [
    "# !pip install -U --no-cache-dir gdown --pre"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4467b7c7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.11/dist-packages/gdown/__main__.py:140: FutureWarning: Option `--id` was deprecated in version 4.3.1 and will be removed in 5.0. You don't need to pass it anymore to use a file ID.\n",
      "  warnings.warn(\n",
      "Failed to retrieve file url:\n",
      "\n",
      "\tToo many users have viewed or downloaded this file recently. Please\n",
      "\ttry accessing the file again later. If the file you are trying to\n",
      "\taccess is particularly large or is shared with many people, it may\n",
      "\ttake up to 24 hours to be able to view or download the file. If you\n",
      "\tstill can't access a file after 24 hours, contact your domain\n",
      "\tadministrator.\n",
      "\n",
      "You may still be able to access the file from the browser:\n",
      "\n",
      "\thttps://drive.google.com/uc?id=1tLx8LRp-sxDp0EcYmYoV_vXdSc-jJ79w\n",
      "\n",
      "but Gdown can't. Please check connections and permissions.\n"
     ]
    }
   ],
   "source": [
    "# !gdown --id 1tLx8LRp-sxDp0EcYmYoV_vXdSc-jJ79w\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2653ceca",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "mkdir: cannot create directory ‘data’: File exists\n"
     ]
    }
   ],
   "source": [
    "# !mkdir data\n",
    "# !mv test data\n",
    "# !mv train data\n",
    "# !mv test_pairs.txt data\n",
    "# !mv train_pairs.txt data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "id": "a5d54cb4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "agnostic_mask.png  diffusion.py  merges.txt\t     requirements.txt\n",
      "attention.py\t   dog.jpg\t model_converter.py  sd-v1-5-inpainting.ckpt\n",
      "clip.py\t\t   encoder.py\t model.py\t     test.ipynb\n",
      "data\t\t   garment.jpg\t person.jpg\t     vocab.json\n",
      "ddpm.py\t\t   image.png\t pipeline.py\t     zalando-hd-resized.zip\n",
      "decoder.py\t   interface.py  README.md\n"
     ]
    }
   ],
   "source": [
    "!ls"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "id": "f379e29c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# cat data/train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "id": "34cda0aa",
   "metadata": {},
   "outputs": [],
   "source": [
    "# !cat data/train_pairs.txt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "53095103",
   "metadata": {},
   "outputs": [],
   "source": [
    "!mkdir output\n",
    "!mkdir checkpoints"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dcb8885d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: diffusers in /usr/local/lib/python3.11/dist-packages (0.32.2)\n",
      "Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.11/dist-packages (from diffusers) (8.6.1)\n",
      "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from diffusers) (3.18.0)\n",
      "Requirement already satisfied: huggingface-hub>=0.23.2 in /usr/local/lib/python3.11/dist-packages (from diffusers) (0.30.2)\n",
      "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from diffusers) (1.26.4)\n",
      "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from diffusers) (2024.11.6)\n",
      "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from diffusers) (2.32.3)\n",
      "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.11/dist-packages (from diffusers) (0.5.2)\n",
      "Requirement already satisfied: Pillow in /usr/local/lib/python3.11/dist-packages (from diffusers) (11.1.0)\n",
      "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.23.2->diffusers) (2024.12.0)\n",
      "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.23.2->diffusers) (24.2)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.23.2->diffusers) (6.0.2)\n",
      "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.23.2->diffusers) (4.67.1)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.23.2->diffusers) (4.13.1)\n",
      "Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.11/dist-packages (from importlib-metadata->diffusers) (3.21.0)\n",
      "Requirement already satisfied: mkl_fft in /usr/local/lib/python3.11/dist-packages (from numpy->diffusers) (1.3.8)\n",
      "Requirement already satisfied: mkl_random in /usr/local/lib/python3.11/dist-packages (from numpy->diffusers) (1.2.4)\n",
      "Requirement already satisfied: mkl_umath in /usr/local/lib/python3.11/dist-packages (from numpy->diffusers) (0.1.1)\n",
      "Requirement already satisfied: mkl in /usr/local/lib/python3.11/dist-packages (from numpy->diffusers) (2025.1.0)\n",
      "Requirement already satisfied: tbb4py in /usr/local/lib/python3.11/dist-packages (from numpy->diffusers) (2022.1.0)\n",
      "Requirement already satisfied: mkl-service in /usr/local/lib/python3.11/dist-packages (from numpy->diffusers) (2.4.1)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->diffusers) (3.4.1)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->diffusers) (3.10)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->diffusers) (2.3.0)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->diffusers) (2025.1.31)\n",
      "Requirement already satisfied: intel-openmp<2026,>=2024 in /usr/local/lib/python3.11/dist-packages (from mkl->numpy->diffusers) (2024.2.0)\n",
      "Requirement already satisfied: tbb==2022.* in /usr/local/lib/python3.11/dist-packages (from mkl->numpy->diffusers) (2022.1.0)\n",
      "Requirement already satisfied: tcmlib==1.* in /usr/local/lib/python3.11/dist-packages (from tbb==2022.*->mkl->numpy->diffusers) (1.2.0)\n",
      "Requirement already satisfied: intel-cmplr-lib-rt in /usr/local/lib/python3.11/dist-packages (from mkl_umath->numpy->diffusers) (2024.2.0)\n",
      "Requirement already satisfied: intel-cmplr-lib-ur==2024.2.0 in /usr/local/lib/python3.11/dist-packages (from intel-openmp<2026,>=2024->mkl->numpy->diffusers) (2024.2.0)\n"
     ]
    }
   ],
   "source": [
    "!pip install diffusers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 139,
   "id": "7efe325c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import gc\n",
    "\n",
    "# Delete all tensors and force garbage collection\n",
    "torch.cuda.empty_cache()           # Clears unused memory\n",
    "gc.collect()                       # Python garbage collection\n",
    "\n",
    "# If you want to delete specific variables:\n",
    "for obj in dir():\n",
    "    if 'cuda' in str(locals()[obj]):\n",
    "        del locals()[obj]\n",
    "gc.collect()\n",
    "torch.cuda.empty_cache()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 140,
   "id": "a48f2753",
   "metadata": {},
   "outputs": [
    {
     "ename": "KeyError",
     "evalue": "'_oh'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
      "\u001b[0;32m/tmp/ipykernel_71/1017109895.py\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mempty_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m  \u001b[0;31m# Release unused GPU memory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mgc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m              \u001b[0;31m# Run Python garbage collector\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/IPython/core/displayhook.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, result)\u001b[0m\n\u001b[1;32m    261\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_output_prompt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    262\u001b[0m             \u001b[0mformat_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmd_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompute_format_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 263\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_user_ns\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    264\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill_exec_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    265\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mformat_dict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/IPython/core/displayhook.py\u001b[0m in \u001b[0;36mupdate_user_ns\u001b[0;34m(self, result)\u001b[0m\n\u001b[1;32m    199\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    200\u001b[0m         \u001b[0;31m# Avoid recursive reference when displaying _oh/Out\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 201\u001b[0;31m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcache_size\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshell\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muser_ns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'_oh'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    202\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshell\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muser_ns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'_oh'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcache_size\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdo_full_cache\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    203\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcull_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mKeyError\u001b[0m: '_oh'"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "import gc\n",
    "\n",
    "torch.cuda.empty_cache()  # Release unused GPU memory\n",
    "gc.collect()              # Run Python garbage collector"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 141,
   "id": "5a57d765",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import gc\n",
    "\n",
    "# Clear CUDA cache and collect garbage\n",
    "torch.cuda.empty_cache()\n",
    "gc.collect()\n",
    "\n",
    "# Delete all user-defined variables except for built-ins and modules\n",
    "for var in list(globals()):\n",
    "    if not var.startswith(\"__\") and var not in [\"torch\", \"gc\"]:\n",
    "        del globals()[var]\n",
    "\n",
    "gc.collect()\n",
    "torch.cuda.empty_cache()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 142,
   "id": "5957ec57",
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "tf.keras.backend.clear_session()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 143,
   "id": "796e8ef7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "GPU memory used: 17.12 MB / 15095.06 MB\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "\n",
    "if torch.cuda.is_available():\n",
    "    used = torch.cuda.memory_allocated() / 1024 ** 2  # in MB\n",
    "    total = torch.cuda.get_device_properties(0).total_memory / 1024 ** 2  # in MB\n",
    "    print(f\"GPU memory used: {used:.2f} MB / {total:.2f} MB\")\n",
    "else:\n",
    "    print(\"CUDA is not available.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 144,
   "id": "32ed173e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total RAM: 31.35 GB\n",
      "Available RAM: 23.97 GB\n"
     ]
    }
   ],
   "source": [
    "import psutil\n",
    "\n",
    "mem = psutil.virtual_memory()\n",
    "total_ram = mem.total / (1024 ** 3)  # in GB\n",
    "available_ram = mem.available / (1024 ** 3)  # in GB\n",
    "print(f\"Total RAM: {total_ram:.2f} GB\")\n",
    "print(f\"Available RAM: {available_ram:.2f} GB\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d13441b5",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3ce888b6",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "081c5b70",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2025-06-11 17:26:05.199950: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
      "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
      "E0000 00:00:1749662765.402784      71 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
      "E0000 00:00:1749662765.463921      71 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "\u001b[0;32m/tmp/ipykernel_71/1242232676.py\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[1;32m     21\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpreload_models_from_standard_weights\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mddpm\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDDPMSampler\u001b[0m  \u001b[0;31m# Fixed import\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcheck_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcompute_vae_encodings\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_time_embedding\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprepare_image\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprepare_mask_image\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdiffusers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtorch_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrandn_tensor\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/kaggle/working/stable-diffusion/stable-diffusion/utils.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0maccelerate\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     11\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtyping\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSet\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mdiffusers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mUNet2DConditionModel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSchedulerMixin\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     13\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtqdm\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     14\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mPIL\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mImageFilter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/utils/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m    909\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    910\u001b[0m             \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 911\u001b[0;31m             \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    912\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    913\u001b[0m             \u001b[0;32mraise\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"module {self.__name__} has no attribute {name}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/utils/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m    908\u001b[0m             \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    909\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 910\u001b[0;31m             \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    911\u001b[0m             \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    912\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/utils/import_utils.py\u001b[0m in \u001b[0;36m_get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m    918\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    919\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 920\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    921\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    922\u001b[0m             raise RuntimeError(\n",
      "\u001b[0;32m/usr/lib/python3.11/importlib/__init__.py\u001b[0m in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m    124\u001b[0m                 \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    125\u001b[0m             \u001b[0mlevel\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 126\u001b[0;31m     \u001b[0;32mreturn\u001b[0m \u001b[0m_bootstrap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gcd_import\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpackage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    127\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/models/unets/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_torch_available\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0munet_1d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mUNet1DModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0munet_2d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mUNet2DModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      7\u001b[0m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0munet_2d_condition\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mUNet2DConditionModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      8\u001b[0m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0munet_3d_condition\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mUNet3DConditionModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/models/unets/unet_2d.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0membeddings\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mGaussianFourierProjection\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTimestepEmbedding\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTimesteps\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodeling_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mModelMixin\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0munet_2d_blocks\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mUNetMidBlock2D\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_down_block\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_up_block\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     26\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/models/unets/unet_2d_blocks.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     34\u001b[0m     \u001b[0mUpsample2D\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     35\u001b[0m )\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransformers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdual_transformer_2d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDualTransformer2DModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     37\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransformers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransformer_2d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTransformer2DModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     38\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/models/transformers/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_torch_available\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mauraflow_transformer_2d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAuraFlowTransformer2DModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mcogvideox_transformer_3d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCogVideoXTransformer3DModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      7\u001b[0m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdit_transformer_2d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDiTTransformer2DModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      8\u001b[0m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdual_transformer_2d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDualTransformer2DModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/models/transformers/cogvideox_transformer_3d.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     21\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m...\u001b[0m\u001b[0mconfiguration_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mConfigMixin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mregister_to_config\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m...\u001b[0m\u001b[0mloaders\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPeftAdapterMixin\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m...\u001b[0m\u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mUSE_PEFT_BACKEND\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mis_torch_version\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogging\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscale_lora_layers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munscale_lora_layers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m...\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtorch_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmaybe_allow_in_graph\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/utils/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m    908\u001b[0m             \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    909\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 910\u001b[0;31m             \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    911\u001b[0m             \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    912\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/utils/import_utils.py\u001b[0m in \u001b[0;36m_get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m    918\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    919\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 920\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    921\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    922\u001b[0m             raise RuntimeError(\n",
      "\u001b[0;32m/usr/lib/python3.11/importlib/__init__.py\u001b[0m in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m    124\u001b[0m                 \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    125\u001b[0m             \u001b[0mlevel\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 126\u001b[0;31m     \u001b[0;32mreturn\u001b[0m \u001b[0m_bootstrap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gcd_import\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpackage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    127\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/loaders/peft.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     36\u001b[0m     \u001b[0mset_weights_and_activate_adapters\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     37\u001b[0m )\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mlora_base\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m_fetch_state_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_func_optionally_disable_offloading\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     39\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0munet_loader_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m_maybe_expand_lora_scales\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     40\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/diffusers/loaders/lora_base.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     49\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     50\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_transformers_available\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 51\u001b[0;31m     \u001b[0;32mfrom\u001b[0m \u001b[0mtransformers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPreTrainedModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     52\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     53\u001b[0m     \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlora\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtext_encoder_attn_modules\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtext_encoder_mlp_modules\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m   1953\u001b[0m             \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPlaceholder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1954\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1955\u001b[0;31m             \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1956\u001b[0m             \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1957\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_modules\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py\u001b[0m in \u001b[0;36m_get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m   1965\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1966\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1967\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1968\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1969\u001b[0m             raise RuntimeError(\n",
      "\u001b[0;32m/usr/lib/python3.11/importlib/__init__.py\u001b[0m in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m    124\u001b[0m                 \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    125\u001b[0m             \u001b[0mlevel\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 126\u001b[0;31m     \u001b[0;32mreturn\u001b[0m \u001b[0m_bootstrap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gcd_import\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpackage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    127\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     67\u001b[0m     \u001b[0mshard_and_distribute_module\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     68\u001b[0m )\n\u001b[0;32m---> 69\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloss_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLOSS_MAPPING\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     70\u001b[0m from .pytorch_utils import (  # noqa: F401\n\u001b[1;32m     71\u001b[0m     \u001b[0mConv1D\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/loss/loss_utils.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     19\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBCEWithLogitsLoss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mMSELoss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mloss_deformable_detr\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDeformableDetrForObjectDetectionLoss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDeformableDetrForSegmentationLoss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mloss_for_object_detection\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mForObjectDetectionLoss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mForSegmentationLoss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mloss_grounding_dino\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mGroundingDinoForObjectDetectionLoss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/loss/loss_deformable_detr.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_transforms\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcenter_to_corners_format\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mis_scipy_available\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      6\u001b[0m from .loss_for_object_detection import (\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/image_transforms.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     45\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     46\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_tf_available\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 47\u001b[0;31m     \u001b[0;32mimport\u001b[0m \u001b[0mtensorflow\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     49\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_flax_available\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     47\u001b[0m \u001b[0m_tf2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m__internal__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     50\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m__operators__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     51\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0maudio\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/_api/v2/__internal__/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      9\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdecorator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdispatch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdistribute\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     12\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0meager_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfeature_column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/_api/v2/__internal__/distribute/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      6\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msys\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0m_sys\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcombinations\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      9\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0minterim\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_api\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmulti_process_runner\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/_api/v2/__internal__/distribute/combinations/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      6\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msys\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0m_sys\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcombinations\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0menv\u001b[0m \u001b[0;31m# line: 456\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      9\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcombinations\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgenerate\u001b[0m \u001b[0;31m# line: 365\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcombinations\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0min_main_process\u001b[0m \u001b[0;31m# line: 418\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/distribute/combinations.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     31\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     32\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclient\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 33\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcollective_all_reduce_strategy\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     34\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdistribute_lib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     35\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmulti_process_runner\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprotobuf\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtensorflow_server_pb2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcollective_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 25\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcross_device_ops\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mcross_device_ops_lib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     26\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcross_device_utils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     27\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdevice_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/distribute/cross_device_ops.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     26\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclient\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdevice_lib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     27\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcollective_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcross_device_utils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     29\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdevice_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     30\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdistribute_utils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/distribute/cross_device_utils.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     21\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcollective_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mvalue_lib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meager\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mbackprop_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meager\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/distribute/values.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     21\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprotobuf\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mstruct_pb2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdevice_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdistribute_lib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpacked_distributed_variable\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpacked\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mreduce_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/distribute/distribute_lib.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m    203\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mag_ctx\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mautograph_ctx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    204\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimpl\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapi\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mautograph\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 205\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdataset_ops\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    206\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcollective_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    207\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribute\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdevice_util\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/data/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     19\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     20\u001b[0m \u001b[0;31m# pylint: disable=unused-import\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mexperimental\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset_ops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAUTOTUNE\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset_ops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/data/experimental/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     97\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     98\u001b[0m \u001b[0;31m# pylint: disable=unused-import\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 99\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mservice\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    100\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatching\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdense_to_ragged_batch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    101\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatching\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdense_to_sparse_batch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/data/experimental/service/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m    417\u001b[0m \"\"\"\n\u001b[1;32m    418\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 419\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_service_ops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdistribute\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    420\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_service_ops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfrom_dataset_id\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    421\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_service_ops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mregister_dataset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/data/experimental/ops/data_service_ops.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     21\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprotobuf\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdata_service_pb2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtf2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcompression_ops\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mservice\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m_pywrap_server_lib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mservice\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m_pywrap_utils_exp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/data/experimental/ops/compression_ops.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     14\u001b[0m \u001b[0;31m# ==============================================================================\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     15\u001b[0m \u001b[0;34m\"\"\"Ops for compressing and uncompressing dataset elements.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutil\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mstructure\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     17\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgen_experimental_dataset_ops\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mged_ops\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/data/util/structure.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     30\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mresource_variable_ops\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     31\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtensor_array_ops\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 32\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mragged\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mragged_tensor\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     33\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplatform\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtf_logging\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mlogging\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     34\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtypes\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0minternal\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/ops/ragged/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     26\u001b[0m \u001b[0mAPI\u001b[0m \u001b[0mdocstring\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mragged\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     27\u001b[0m \"\"\"\n\u001b[0;32m---> 28\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mragged\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mragged_tensor\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/ops/ragged/ragged_tensor.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m   3147\u001b[0m \u001b[0;31m# are registered. Ragged ops import RaggedTensor, so import at bottom of the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   3148\u001b[0m \u001b[0;31m# file to avoid a partially-initialized module error.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3149\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mragged\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mragged_ops\u001b[0m  \u001b[0;31m# pylint: disable=unused-import, g-bad-import-order, g-import-not-at-top\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tensorflow/python/ops/ragged/ragged_ops.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     26\u001b[0m \u001b[0;31m# pylint: disable=unused-import\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 27\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mragged\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mragged_array_ops\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     28\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mragged\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mragged_autograph\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     29\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mragged\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mragged_batch_gather_ops\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "import os\n",
    "import json\n",
    "import random\n",
    "import argparse\n",
    "from pathlib import Path\n",
    "from typing import Dict, List, Tuple, Optional\n",
    "\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from torch.optim import AdamW\n",
    "from torch.optim.lr_scheduler import CosineAnnealingLR\n",
    "\n",
    "import numpy as np\n",
    "from PIL import Image\n",
    "from tqdm import tqdm\n",
    "from VITON_Dataset import VITONHDTestDataset\n",
    "\n",
    "# Import your custom modules\n",
    "from model import preload_models_from_standard_weights\n",
    "from ddpm import DDPMSampler  # Fixed import\n",
    "from utils import check_inputs, compute_vae_encodings, get_time_embedding, prepare_image, prepare_mask_image\n",
    "from diffusers.utils.torch_utils import randn_tensor\n",
    "\n",
    "class CatVTONTrainer:\n",
    "    \"\"\"CatVTON Training Class with PEFT, CFG and DREAM support\"\"\"\n",
    "    \n",
    "    def __init__(\n",
    "        self,\n",
    "        models: Dict[str, nn.Module],\n",
    "        train_dataloader: DataLoader,\n",
    "        val_dataloader: Optional[DataLoader] = None,\n",
    "        device: str = \"cuda\",\n",
    "        learning_rate: float = 1e-5,  # Updated to paper value\n",
    "        num_epochs: int = 100,\n",
    "        save_steps: int = 1000,\n",
    "        output_dir: str = \"./checkpoints\",\n",
    "        cfg_dropout_prob: float = 0.1,\n",
    "        guidance_scale: float = 2.5,\n",
    "        num_inference_steps: int = 50,\n",
    "        gradient_accumulation_steps: int = 1,\n",
    "        max_grad_norm: float = 1.0,\n",
    "        use_peft: bool = True,\n",
    "        dream_lambda: float = 10.0,  # DREAM parameter\n",
    "        resume_from_checkpoint: Optional[str] = None,\n",
    "        use_mixed_precision: bool = True,  # For memory optimization\n",
    "        height=512,\n",
    "        width=512,\n",
    "    ):\n",
    "        self.training = True\n",
    "        self.models = models\n",
    "        self.train_dataloader = train_dataloader\n",
    "        self.val_dataloader = val_dataloader\n",
    "        self.device = device\n",
    "        self.learning_rate = learning_rate\n",
    "        self.num_epochs = num_epochs\n",
    "        self.save_steps = save_steps\n",
    "        self.output_dir = Path(output_dir)\n",
    "        self.cfg_dropout_prob = cfg_dropout_prob\n",
    "        self.guidance_scale = guidance_scale\n",
    "        self.num_inference_steps = num_inference_steps\n",
    "        self.gradient_accumulation_steps = gradient_accumulation_steps\n",
    "        self.max_grad_norm = max_grad_norm\n",
    "        self.use_peft = use_peft\n",
    "        self.dream_lambda = dream_lambda\n",
    "        self.use_mixed_precision = use_mixed_precision\n",
    "        self.height=height\n",
    "        self.width=width\n",
    "\n",
    "        self.encoder=self.models.get('encoder', None)\n",
    "        self.decoder=self.models.get('decoder', None)\n",
    "        self.diffusion=self.models.get('diffusion', None)\n",
    "\n",
    "        self.generator = torch.Generator(device=device)\n",
    "        \n",
    "        # Create output directory\n",
    "        self.output_dir.mkdir(parents=True, exist_ok=True)\n",
    "        \n",
    "        # Setup mixed precision training\n",
    "        if self.use_mixed_precision:\n",
    "            self.scaler = torch.cuda.amp.GradScaler()\n",
    "\n",
    "        self.weight_dtype = torch.float16 if use_mixed_precision else torch.float32\n",
    "        \n",
    "        # Setup models and optimizers\n",
    "        self._setup_training()\n",
    "        \n",
    "        # Initialize scheduler and sampler\n",
    "        self.scheduler = DDPMSampler(self.generator, num_training_steps=1000)\n",
    "        \n",
    "        # Resume from checkpoint if provided\n",
    "        self.global_step = 0\n",
    "        self.current_epoch = 0\n",
    "        if resume_from_checkpoint:\n",
    "            self._load_checkpoint(resume_from_checkpoint)\n",
    "    \n",
    "    def _setup_training(self):\n",
    "        \"\"\"Setup models for training with PEFT\"\"\"\n",
    "        # Move models to device with mixed precision\n",
    "        for name, model in self.models.items():\n",
    "            model.to(self.device)\n",
    "            if self.use_mixed_precision and name != 'encoder':  # Keep encoder in float32 for stability\n",
    "                model.half()\n",
    "        \n",
    "        # Freeze all parameters first\n",
    "        for model in self.models.values():\n",
    "            for param in model.parameters():\n",
    "                param.requires_grad = False\n",
    "        \n",
    "        # Enable training for specific layers based on PEFT strategy\n",
    "        if self.use_peft:\n",
    "            self._enable_peft_training()\n",
    "        else:\n",
    "            # Enable full training for diffusion model\n",
    "            for param in self.models['diffusion'].parameters():\n",
    "                param.requires_grad = True\n",
    "        \n",
    "        # Collect trainable parameters\n",
    "        trainable_params = []\n",
    "        total_params = 0\n",
    "        trainable_count = 0\n",
    "        \n",
    "        for name, model in self.models.items():\n",
    "            for param_name, param in model.named_parameters():\n",
    "                total_params += param.numel()\n",
    "                if param.requires_grad:\n",
    "                    trainable_params.append(param)\n",
    "                    trainable_count += param.numel()\n",
    "        \n",
    "        print(f\"Total parameters: {total_params:,}\")\n",
    "        print(f\"Trainable parameters: {trainable_count:,} ({trainable_count/total_params*100:.2f}%)\")\n",
    "        \n",
    "        # Verify we're close to the paper's 49.57M parameters for self-attention only\n",
    "        if self.use_peft:\n",
    "            expected_params = 49_570_000  # 49.57M\n",
    "            if abs(trainable_count - expected_params) > 5_000_000:  # 5M tolerance\n",
    "                print(f\"Warning: Expected ~{expected_params:,} trainable parameters, got {trainable_count:,}\")\n",
    "        \n",
    "        # Setup optimizer - AdamW as per paper\n",
    "        self.optimizer = AdamW(\n",
    "            trainable_params,\n",
    "            lr=self.learning_rate,\n",
    "            betas=(0.9, 0.999),\n",
    "            weight_decay=1e-2,\n",
    "            eps=1e-8\n",
    "        )\n",
    "        \n",
    "        # Setup learning rate scheduler (constant as per paper)\n",
    "        # For constant LR, we can use a dummy scheduler\n",
    "        self.lr_scheduler = torch.optim.lr_scheduler.LambdaLR(\n",
    "            self.optimizer, lr_lambda=lambda epoch: 1.0\n",
    "        )\n",
    "    \n",
    "    def _enable_peft_training(self):\n",
    "        \"\"\"Enable PEFT training - only self-attention layers (49.57M parameters)\"\"\"\n",
    "        print(\"Enabling PEFT training (self-attention layers only)\")\n",
    "        \n",
    "        unet = self.diffusion.unet\n",
    "        \n",
    "        # Enable attention layers in encoders\n",
    "        for layers in [unet.encoders, unet.decoders]:\n",
    "            for layer in layers:\n",
    "                if hasattr(layer, 'attention'):  # UNET_AttentionBlock\n",
    "                    for param in layer.attention.parameters():\n",
    "                        param.requires_grad = True\n",
    "                elif hasattr(layer, 'attention_1'):  # Alternative naming\n",
    "                    for param in layer.attention_1.parameters():\n",
    "                        param.requires_grad = True\n",
    "        \n",
    "        # Enable attention layers in bottleneck\n",
    "        for layer in unet.bottleneck:\n",
    "            if hasattr(layer, 'attention'):\n",
    "                for param in layer.attention.parameters():\n",
    "                    param.requires_grad = True\n",
    "            elif hasattr(layer, 'attention_1'):\n",
    "                for param in layer.attention_1.parameters():\n",
    "                    param.requires_grad = True\n",
    "    \n",
    "    def _apply_cfg_dropout(self, garment_latent: torch.Tensor) -> torch.Tensor:\n",
    "        \"\"\"Apply classifier-free guidance dropout (10% chance)\"\"\"\n",
    "        if self.training and random.random() < self.cfg_dropout_prob:\n",
    "            # Replace with zero tensor for unconditional generation\n",
    "            return torch.zeros_like(garment_latent)\n",
    "        return garment_latent\n",
    "    \n",
    "    def compute_loss(self, batch: Dict[str, torch.Tensor]) -> torch.Tensor:\n",
    "        \"\"\"Compute MSE loss for denoising with DREAM strategy\"\"\"\n",
    "        person_images = batch['person'].to(self.device)\n",
    "        cloth_images = batch['cloth'].to(self.device)\n",
    "        masks = batch['mask'].to(self.device)\n",
    "        \n",
    "        batch_size = person_images.shape[0]\n",
    "\n",
    "        concat_dim = -2  # FIXME: y axis concat\n",
    "        # Prepare inputs to Tensor\n",
    "        image, condition_image, mask = check_inputs(person_images, cloth_images, masks, self.width, self.height)\n",
    "        image = prepare_image(person_images).to(self.device, dtype=self.weight_dtype)\n",
    "        condition_image = prepare_image(cloth_images).to(self.device, dtype=self.weight_dtype)\n",
    "        mask = prepare_mask_image(masks).to(self.device, dtype=self.weight_dtype)\n",
    "        # Mask image\n",
    "        masked_image = image * (mask < 0.5)\n",
    "\n",
    "        with torch.cuda.amp.autocast(enabled=self.use_mixed_precision):\n",
    "        # VAE encoding\n",
    "            masked_latent = compute_vae_encodings(masked_image, self.encoder)\n",
    "            condition_latent = compute_vae_encodings(condition_image, self.encoder)\n",
    "            mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode=\"nearest\")\n",
    "            del image, mask, condition_image\n",
    "\n",
    "\n",
    "            # Apply CFG dropout to garment latent\n",
    "            condition_latent = self._apply_cfg_dropout(condition_latent)\n",
    "            \n",
    "            # Concatenate latents\n",
    "            masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim)\n",
    "            mask_latent_concat = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim)\n",
    "\n",
    "            target_latents = masked_latent_concat\n",
    "\n",
    "            noise=randn_tensor(\n",
    "                masked_latent_concat.shape,\n",
    "                generator=self.generator,\n",
    "                device=masked_latent_concat.device,\n",
    "                dtype=self.weight_dtype,\n",
    "            )\n",
    "\n",
    "            timesteps = torch.randint(1, 1000, size=(1,))[0].long().item()\n",
    "\n",
    "            timesteps_embedding=get_time_embedding(timesteps)\n",
    "\n",
    "            # Add noise to latents\n",
    "            noisy_latents = self.scheduler.add_noise(target_latents, timesteps, noise)\n",
    "\n",
    "            non_inpainting_latent_model_input = noisy_latents\n",
    "            inpainting_latent_model_input = torch.cat([\n",
    "                non_inpainting_latent_model_input, \n",
    "                mask_latent_concat, \n",
    "                masked_latent_concat\n",
    "            ], dim=1).to(self.device, dtype=self.weight_dtype)\n",
    "\n",
    "            # DREAM strategy implementation\n",
    "            if self.dream_lambda > 0:\n",
    "            \n",
    "                # print(f\"Model input shape: {model_input.shape}\")\n",
    "                # print(f\"Time embeddings shape: {time_embeddings.shape}\")\n",
    "                \n",
    "                # Get initial noise prediction\n",
    "                with torch.no_grad():\n",
    "                    epsilon_theta = self.diffusion(\n",
    "                    inpainting_latent_model_input,\n",
    "                    timesteps_embedding\n",
    "                )\n",
    "\n",
    "                # print(f\"Predicted noise shape: {epsilon_theta.shape}\")\n",
    "                \n",
    "                # Apply DREAM: zˆt = √αt*z0 + √(1-αt)*(ε + λ*εθ)\n",
    "                alphas_cumprod = self.scheduler.alphas_cumprod.to(device=self.device, dtype=self.weight_dtype)\n",
    "                sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5\n",
    "                sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5\n",
    "                \n",
    "                # Reshape for broadcasting\n",
    "                sqrt_alpha_prod = sqrt_alpha_prod.view(-1, 1, 1, 1)\n",
    "                sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.view(-1, 1, 1, 1)\n",
    "                \n",
    "                # DREAM noise combination\n",
    "                dream_noise = noise + self.dream_lambda * epsilon_theta\n",
    "\n",
    "                dream_noisy_latents = sqrt_alpha_prod * target_latents + sqrt_one_minus_alpha_prod * dream_noise\n",
    "\n",
    "                dream_model_input = torch.cat([\n",
    "                    dream_noisy_latents, \n",
    "                    mask_latent_concat, \n",
    "                    masked_latent_concat\n",
    "                ], dim=1)\n",
    "\n",
    "                predicted_noise= self.diffusion(\n",
    "                    dream_model_input,\n",
    "                    timesteps_embedding\n",
    "                )\n",
    "                # DREAM loss: |(ε + λεθ) - εθ(ẑt, t)|²\n",
    "                loss = F.mse_loss(predicted_noise, dream_noise)\n",
    "            else:\n",
    "                # Standard training without DREAM\n",
    "                predicted_noise = self.diffusion(\n",
    "                    inpainting_latent_model_input,\n",
    "                    timesteps_embedding,\n",
    "                )\n",
    "\n",
    "                # Standard MSE loss\n",
    "                loss = F.mse_loss(predicted_noise, noise)\n",
    "            \n",
    "        return loss\n",
    "    \n",
    "    def train_epoch(self) -> float:\n",
    "        \"\"\"Train for one epoch\"\"\"\n",
    "        self.models['diffusion'].train()\n",
    "        total_loss = 0.0\n",
    "        num_batches = len(self.train_dataloader)\n",
    "        \n",
    "        progress_bar = tqdm(self.train_dataloader, desc=f\"Epoch {self.current_epoch+1}\")\n",
    "        \n",
    "        for step, batch in enumerate(progress_bar):\n",
    "            # Compute loss with mixed precision\n",
    "            if self.use_mixed_precision:\n",
    "                with torch.cuda.amp.autocast():\n",
    "                    loss = self.compute_loss(batch)\n",
    "                \n",
    "                # Scale loss for gradient accumulation\n",
    "                loss = loss / self.gradient_accumulation_steps\n",
    "                \n",
    "                # Backward pass with scaling\n",
    "                self.scaler.scale(loss).backward()\n",
    "            else:\n",
    "                loss = self.compute_loss(batch)\n",
    "                loss = loss / self.gradient_accumulation_steps\n",
    "                loss.backward()\n",
    "            \n",
    "            # Gradient accumulation\n",
    "            if (step + 1) % self.gradient_accumulation_steps == 0:\n",
    "                if self.use_mixed_precision:\n",
    "                    # Unscale gradients and clip\n",
    "                    self.scaler.unscale_(self.optimizer)\n",
    "                    torch.nn.utils.clip_grad_norm_(\n",
    "                        [p for p in self.models['diffusion'].parameters() if p.requires_grad],\n",
    "                        self.max_grad_norm\n",
    "                    )\n",
    "                    \n",
    "                    # Optimizer step with scaling\n",
    "                    self.scaler.step(self.optimizer)\n",
    "                    self.scaler.update()\n",
    "                else:\n",
    "                    # Clip gradients\n",
    "                    torch.nn.utils.clip_grad_norm_(\n",
    "                        [p for p in self.models['diffusion'].parameters() if p.requires_grad],\n",
    "                        self.max_grad_norm\n",
    "                    )\n",
    "                    self.optimizer.step()\n",
    "                \n",
    "                self.lr_scheduler.step()\n",
    "                self.optimizer.zero_grad()\n",
    "                self.global_step += 1\n",
    "            \n",
    "            total_loss += loss.item() * self.gradient_accumulation_steps\n",
    "            \n",
    "            # Update progress bar\n",
    "            progress_bar.set_postfix({\n",
    "                'loss': loss.item() * self.gradient_accumulation_steps,\n",
    "                'lr': self.optimizer.param_groups[0]['lr'],\n",
    "                'step': self.global_step\n",
    "            })\n",
    "            \n",
    "            # Save checkpoint\n",
    "            if self.global_step % self.save_steps == 0:\n",
    "                self._save_checkpoint()\n",
    "            \n",
    "            # Clear cache periodically to prevent OOM\n",
    "            if step % 50 == 0:\n",
    "                torch.cuda.empty_cache()\n",
    "        \n",
    "        return total_loss / num_batches\n",
    "    \n",
    "    def train(self):\n",
    "        \"\"\"Main training loop\"\"\"\n",
    "        print(f\"Starting training for {self.num_epochs} epochs\")\n",
    "        print(f\"Total training steps: {self.num_epochs * len(self.train_dataloader)}\")\n",
    "        print(f\"Using DREAM with lambda = {self.dream_lambda}\")\n",
    "        print(f\"Mixed precision: {self.use_mixed_precision}\")\n",
    "        \n",
    "        \n",
    "        for epoch in range(self.current_epoch, self.num_epochs):\n",
    "            self.current_epoch = epoch\n",
    "            \n",
    "            # Train\n",
    "            train_loss = self.train_epoch()\n",
    "            \n",
    "            print(f\"Epoch {epoch+1}/{self.num_epochs}\")\n",
    "            print(f\"Train Loss: {train_loss:.6f}\")\n",
    "            \n",
    "            # Save epoch checkpoint\n",
    "            if (epoch + 1) % 10 == 0:\n",
    "                self._save_checkpoint(epoch_checkpoint=True)\n",
    "            \n",
    "            # Clear cache at end of epoch\n",
    "            torch.cuda.empty_cache()\n",
    "    \n",
    "    def _save_checkpoint(self, is_best: bool = False, epoch_checkpoint: bool = False):\n",
    "        \"\"\"Save model checkpoint\"\"\"\n",
    "        checkpoint = {\n",
    "            'global_step': self.global_step,\n",
    "            'current_epoch': self.current_epoch,\n",
    "            'diffusion_state_dict': self.models['diffusion'].state_dict(),\n",
    "            'optimizer_state_dict': self.optimizer.state_dict(),\n",
    "            'lr_scheduler_state_dict': self.lr_scheduler.state_dict(),\n",
    "            'dream_lambda': self.dream_lambda,\n",
    "            'use_peft': self.use_peft,\n",
    "        }\n",
    "        \n",
    "        if self.use_mixed_precision:\n",
    "            checkpoint['scaler_state_dict'] = self.scaler.state_dict()\n",
    "        \n",
    "        if is_best:\n",
    "            checkpoint_path = self.output_dir / \"best_model.pth\"\n",
    "        elif epoch_checkpoint:\n",
    "            checkpoint_path = self.output_dir / f\"checkpoint_epoch_{self.current_epoch+1}.pth\"\n",
    "        else:\n",
    "            checkpoint_path = self.output_dir / f\"checkpoint_step_{self.global_step}.pth\"\n",
    "        \n",
    "        torch.save(checkpoint, checkpoint_path)\n",
    "        print(f\"Checkpoint saved: {checkpoint_path}\")\n",
    "    \n",
    "    def _load_checkpoint(self, checkpoint_path: str):\n",
    "        \"\"\"Load model checkpoint\"\"\"\n",
    "        checkpoint = torch.load(checkpoint_path, map_location=self.device)\n",
    "        \n",
    "        self.global_step = checkpoint['global_step']\n",
    "        self.current_epoch = checkpoint['current_epoch']\n",
    "        self.dream_lambda = checkpoint.get('dream_lambda', 10.0)\n",
    "        \n",
    "        self.models['diffusion'].load_state_dict(checkpoint['diffusion_state_dict'])\n",
    "        self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n",
    "        self.lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])\n",
    "        \n",
    "        if self.use_mixed_precision and 'scaler_state_dict' in checkpoint:\n",
    "            self.scaler.load_state_dict(checkpoint['scaler_state_dict'])\n",
    "        \n",
    "        print(f\"Checkpoint loaded: {checkpoint_path}\")\n",
    "        print(f\"Resuming from epoch {self.current_epoch}, step {self.global_step}\")\n",
    "\n",
    "\n",
    "def create_dataloaders(args) -> Tuple[DataLoader, Optional[DataLoader]]:\n",
    "    \"\"\"Create training and validation dataloaders\"\"\"\n",
    "    # Dataset\n",
    "    if args.dataset_name == \"vitonhd\":\n",
    "        dataset = VITONHDTestDataset(args)\n",
    "    else:\n",
    "        raise ValueError(f\"Invalid dataset name {args.dataset}.\")\n",
    "    print(f\"Dataset {args.dataset_name} loaded, total {len(dataset)} pairs.\")\n",
    "    dataloader = DataLoader(\n",
    "        dataset,\n",
    "        batch_size=args.batch_size,\n",
    "        shuffle=False,\n",
    "        num_workers=args.dataloader_num_workers\n",
    "    )\n",
    "    \n",
    "    return dataloader\n",
    "\n",
    "\n",
    "def main():\n",
    "    args=argparse.Namespace()\n",
    "    args.__dict__= {\n",
    "        \"base_model_path\": \"inkpunk-diffusion-v1.ckpt\",\n",
    "        \"resume_path\": \"zhengchong/CatVTON\",\n",
    "        \"dataset_name\": \"vitonhd\",\n",
    "        \"data_root_path\": \"/kaggle/input/viton-hd-dataset\",\n",
    "        \"output_dir\": \"./output\",\n",
    "        \"seed\": 42,\n",
    "        \"batch_size\": 2,\n",
    "        \"num_inference_steps\": 50,\n",
    "        \"guidance_scale\": 2.5,\n",
    "        \"width\": 384,\n",
    "        \"height\": 512,\n",
    "        \"repaint\": True,\n",
    "        \"eval_pair\": False,\n",
    "        \"concat_eval_results\": True,\n",
    "        \"allow_tf32\": True,\n",
    "        \"dataloader_num_workers\": 4,\n",
    "        \"mixed_precision\": 'no',\n",
    "        \"concat_axis\": 'y',\n",
    "        \"enable_condition_noise\": True,\n",
    "        \"device\":\"cuda\",\n",
    "        \"num_training_steps\": 16000,\n",
    "        \"learning_rate\": 1e-5,\n",
    "        \"gradient_accumulation_steps\": 128,  # Simulate batch size 128\n",
    "        \"max_grad_norm\": 1.0,\n",
    "        \"use_peft\": True,\n",
    "        \"cfg_dropout_prob\": 0.1,\n",
    "        \"dream_lambda\": 10.0,\n",
    "        \"use_mixed_precision\": True,\n",
    "        \"output_dir\": \"./checkpoints\",\n",
    "        \"save_steps\": 1000,\n",
    "        \"resume_from_checkpoint\": None,\n",
    "        \"is_train\": True\n",
    "    }\n",
    "    \n",
    "    # Calculate epochs from training steps\n",
    "    # This will be calculated after dataloader creation\n",
    "    \n",
    "    # Set random seeds\n",
    "    torch.manual_seed(args.seed)\n",
    "    np.random.seed(args.seed)\n",
    "    random.seed(args.seed)\n",
    "    if torch.cuda.is_available():\n",
    "        torch.cuda.manual_seed_all(args.seed)\n",
    "    \n",
    "    # Optimize CUDA settings for memory\n",
    "    torch.backends.cudnn.benchmark = True\n",
    "    torch.backends.cuda.matmul.allow_tf32 = True  \n",
    "    torch.set_float32_matmul_precision(\"high\")\n",
    "\n",
    "    # Load pretrained models\n",
    "    print(\"Loading pretrained models...\")\n",
    "    models = preload_models_from_standard_weights(args.base_model_path, args.device)\n",
    "    \n",
    "    # Create dataloaders\n",
    "    print(\"Creating dataloaders...\")\n",
    "    train_dataloader = create_dataloaders(args)\n",
    "    \n",
    "    # Calculate epochs from training steps\n",
    "    steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps\n",
    "    num_epochs = (args.num_training_steps + steps_per_epoch - 1) // steps_per_epoch\n",
    "    print(f\"Training for {num_epochs} epochs ({args.num_training_steps} steps)\")\n",
    "    args.num_epochs = num_epochs\n",
    "    print(f\"Steps per epoch: {steps_per_epoch}\")\n",
    "    print(f\"Total training steps: {args.num_training_steps}\")\n",
    "    print(f\"Total epochs: {num_epochs}\")\n",
    "    # Initialize trainer\n",
    "    print(\"Initializing trainer...\")    \n",
    "    trainer = CatVTONTrainer(\n",
    "        models=models,\n",
    "        train_dataloader=train_dataloader,\n",
    "        device=args.device,\n",
    "        learning_rate=args.learning_rate,\n",
    "        num_epochs=args.num_epochs,\n",
    "        save_steps=args.save_steps,\n",
    "        output_dir=args.output_dir,\n",
    "        cfg_dropout_prob=args.cfg_dropout_prob,\n",
    "        guidance_scale=args.guidance_scale,\n",
    "        num_inference_steps=50,  # Fixed as per paper\n",
    "        gradient_accumulation_steps=args.gradient_accumulation_steps,\n",
    "        max_grad_norm=args.max_grad_norm,\n",
    "        use_peft=args.use_peft,\n",
    "        dream_lambda=args.dream_lambda,\n",
    "        resume_from_checkpoint=args.resume_from_checkpoint,\n",
    "        use_mixed_precision=args.use_mixed_precision\n",
    "    )\n",
    "    # Start training\n",
    "    print(\"Starting training...\")\n",
    "    trainer.train() \n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    main()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2eff454d",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2eefd6bc",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}