Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,12 @@
|
|
| 1 |
from fastapi import FastAPI, Query, HTTPException
|
| 2 |
-
import os
|
| 3 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 4 |
import torch
|
| 5 |
import re
|
| 6 |
import time
|
| 7 |
import logging
|
| 8 |
import os
|
| 9 |
-
import gc
|
| 10 |
-
import json
|
| 11 |
from transformers import AutoTokenizer, GenerationConfig
|
| 12 |
from peft import AutoPeftModelForCausalLM
|
| 13 |
-
|
| 14 |
-
from unsloth import FastLanguageModel
|
| 15 |
|
| 16 |
# -------- CONFIGURAÇÕES DE OTIMIZAÇÃO --------
|
| 17 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
@@ -20,16 +15,19 @@ os.environ["MKL_NUM_THREADS"] = "2"
|
|
| 20 |
torch.set_num_threads(2)
|
| 21 |
torch.set_num_interop_threads(1)
|
| 22 |
|
| 23 |
-
# -------- LOGGING --------
|
| 24 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 25 |
log = logging.getLogger("news-filter")
|
| 26 |
|
| 27 |
-
# --------
|
| 28 |
model_name = "habulaj/filterinstruct180"
|
| 29 |
log.info("🚀 Carregando modelo e tokenizer...")
|
| 30 |
|
| 31 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
if tokenizer.pad_token is None:
|
| 35 |
tokenizer.pad_token = tokenizer.eos_token
|
|
@@ -39,11 +37,12 @@ model = AutoPeftModelForCausalLM.from_pretrained(
|
|
| 39 |
device_map="cpu",
|
| 40 |
torch_dtype=torch.bfloat16,
|
| 41 |
low_cpu_mem_usage=True,
|
|
|
|
| 42 |
trust_remote_code=True
|
| 43 |
)
|
| 44 |
-
|
| 45 |
model.eval()
|
| 46 |
-
log.info("✅ Modelo carregado (
|
| 47 |
|
| 48 |
generation_config = GenerationConfig(
|
| 49 |
max_new_tokens=128,
|
|
@@ -53,113 +52,120 @@ generation_config = GenerationConfig(
|
|
| 53 |
use_cache=True,
|
| 54 |
eos_token_id=tokenizer.eos_token_id,
|
| 55 |
pad_token_id=tokenizer.eos_token_id,
|
|
|
|
| 56 |
repetition_penalty=1.1,
|
| 57 |
length_penalty=1.0
|
| 58 |
)
|
| 59 |
|
| 60 |
-
# -------- FASTAPI --------
|
| 61 |
app = FastAPI(title="News Filter JSON API")
|
| 62 |
|
| 63 |
@app.get("/")
|
| 64 |
def read_root():
|
| 65 |
return {"message": "News Filter JSON API is running!", "docs": "/docs"}
|
| 66 |
|
| 67 |
-
@app.get("/filter")
|
| 68 |
-
def get_filter(
|
| 69 |
-
title: str = Query(..., description="News title"),
|
| 70 |
-
content: str = Query(..., description="News content")
|
| 71 |
-
):
|
| 72 |
-
try:
|
| 73 |
-
result = infer_filter(title, content)
|
| 74 |
-
try:
|
| 75 |
-
return {"result": json.loads(result)}
|
| 76 |
-
except json.JSONDecodeError:
|
| 77 |
-
return {"result": result, "warning": "Returned as string due to JSON parsing error"}
|
| 78 |
-
except HTTPException as he:
|
| 79 |
-
raise he
|
| 80 |
-
except Exception as e:
|
| 81 |
-
log.exception("❌ Erro inesperado:")
|
| 82 |
-
raise HTTPException(status_code=500, detail="Internal server error during inference.")
|
| 83 |
-
|
| 84 |
-
@app.on_event("startup")
|
| 85 |
-
async def warmup():
|
| 86 |
-
log.info("🔥 Executando warmup...")
|
| 87 |
-
try:
|
| 88 |
-
infer_filter("Test title", "Test content")
|
| 89 |
-
log.info("✅ Warmup concluído.")
|
| 90 |
-
except Exception as e:
|
| 91 |
-
log.warning(f"⚠️ Warmup falhou: {e}")
|
| 92 |
-
|
| 93 |
# -------- INFERÊNCIA --------
|
| 94 |
def infer_filter(title, content):
|
| 95 |
-
messages = [
|
| 96 |
-
{
|
| 97 |
-
"role": "user",
|
| 98 |
-
"content": """Analyze the news title and content, and return the filters in JSON format with the defined fields.
|
| 99 |
-
|
| 100 |
-
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
|
| 101 |
-
|
| 102 |
-
Title: "New 'Star Wars' Movie Announced"
|
| 103 |
-
Content: "Lucasfilm confirmed a new Star Wars movie set to release in 2026, directed by a rising filmmaker."
|
| 104 |
-
"""
|
| 105 |
-
},
|
| 106 |
-
{
|
| 107 |
-
"role": "assistant",
|
| 108 |
-
"content": '{ "death_related": false, "relevance": "high", "global_interest": true, "entity_type": "movie", "entity_name": "Star Wars", "breaking_news": true, "has_video_content": false }'
|
| 109 |
-
},
|
| 110 |
-
{
|
| 111 |
-
"role": "user",
|
| 112 |
-
"content": """Analyze the news title and content, and return the filters in JSON format with the defined fields.
|
| 113 |
-
|
| 114 |
-
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
|
| 115 |
-
|
| 116 |
-
Title: "Legendary Musician Carlos Mendes Dies at 78"
|
| 117 |
-
Content: "Carlos Mendes, the internationally acclaimed Brazilian guitarist and composer known for blending traditional bossa nova with modern jazz, has died at the age of 78."
|
| 118 |
-
"""
|
| 119 |
-
},
|
| 120 |
-
{
|
| 121 |
-
"role": "assistant",
|
| 122 |
-
"content": '{ "death_related": true, "relevance": "high", "global_interest": true, "entity_type": "person", "entity_name": "Carlos Mendes", "breaking_news": true, "has_video_content": false }'
|
| 123 |
-
},
|
| 124 |
-
{
|
| 125 |
-
"role": "user",
|
| 126 |
-
"content": f"""Analyze the news title and content, and return the filters in JSON format with the defined fields.
|
| 127 |
-
|
| 128 |
-
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
|
| 129 |
-
|
| 130 |
-
Title: "{title}"
|
| 131 |
-
Content: "{content}"
|
| 132 |
-
"""
|
| 133 |
-
}
|
| 134 |
-
]
|
| 135 |
-
|
| 136 |
log.info(f"🧠 Inferência iniciada para: {title}")
|
| 137 |
start_time = time.time()
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
return_tensors="pt",
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
with torch.no_grad(), torch.inference_mode():
|
| 147 |
outputs = model.generate(
|
| 148 |
-
input_ids=
|
|
|
|
| 149 |
generation_config=generation_config,
|
|
|
|
|
|
|
|
|
|
| 150 |
)
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
json_str = extract_json(generated)
|
| 157 |
duration = time.time() - start_time
|
| 158 |
log.info(f"✅ JSON extraído em {duration:.2f}s")
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
def extract_json(text):
|
| 162 |
-
match = re.search(r'\{
|
| 163 |
if match:
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, Query, HTTPException
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import re
|
| 4 |
import time
|
| 5 |
import logging
|
| 6 |
import os
|
|
|
|
|
|
|
| 7 |
from transformers import AutoTokenizer, GenerationConfig
|
| 8 |
from peft import AutoPeftModelForCausalLM
|
| 9 |
+
import gc
|
|
|
|
| 10 |
|
| 11 |
# -------- CONFIGURAÇÕES DE OTIMIZAÇÃO --------
|
| 12 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
| 15 |
torch.set_num_threads(2)
|
| 16 |
torch.set_num_interop_threads(1)
|
| 17 |
|
| 18 |
+
# -------- LOGGING CONFIG --------
|
| 19 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 20 |
log = logging.getLogger("news-filter")
|
| 21 |
|
| 22 |
+
# -------- LOAD MODEL --------
|
| 23 |
model_name = "habulaj/filterinstruct180"
|
| 24 |
log.info("🚀 Carregando modelo e tokenizer...")
|
| 25 |
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 27 |
+
model_name,
|
| 28 |
+
use_fast=True,
|
| 29 |
+
padding_side="left"
|
| 30 |
+
)
|
| 31 |
|
| 32 |
if tokenizer.pad_token is None:
|
| 33 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
| 37 |
device_map="cpu",
|
| 38 |
torch_dtype=torch.bfloat16,
|
| 39 |
low_cpu_mem_usage=True,
|
| 40 |
+
use_cache=True,
|
| 41 |
trust_remote_code=True
|
| 42 |
)
|
| 43 |
+
|
| 44 |
model.eval()
|
| 45 |
+
log.info("✅ Modelo carregado (eval mode).")
|
| 46 |
|
| 47 |
generation_config = GenerationConfig(
|
| 48 |
max_new_tokens=128,
|
|
|
|
| 52 |
use_cache=True,
|
| 53 |
eos_token_id=tokenizer.eos_token_id,
|
| 54 |
pad_token_id=tokenizer.eos_token_id,
|
| 55 |
+
no_repeat_ngram_size=2,
|
| 56 |
repetition_penalty=1.1,
|
| 57 |
length_penalty=1.0
|
| 58 |
)
|
| 59 |
|
| 60 |
+
# -------- FASTAPI INIT --------
|
| 61 |
app = FastAPI(title="News Filter JSON API")
|
| 62 |
|
| 63 |
@app.get("/")
|
| 64 |
def read_root():
|
| 65 |
return {"message": "News Filter JSON API is running!", "docs": "/docs"}
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
# -------- INFERÊNCIA --------
|
| 68 |
def infer_filter(title, content):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
log.info(f"🧠 Inferência iniciada para: {title}")
|
| 70 |
start_time = time.time()
|
| 71 |
|
| 72 |
+
chat_prompt = build_chat_prompt(title, content)
|
| 73 |
+
|
| 74 |
+
inputs = tokenizer(
|
| 75 |
+
chat_prompt,
|
| 76 |
return_tensors="pt",
|
| 77 |
+
truncation=True,
|
| 78 |
+
max_length=512,
|
| 79 |
+
padding=False,
|
| 80 |
+
add_special_tokens=False
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
input_ids = inputs.input_ids
|
| 84 |
+
attention_mask = inputs.attention_mask
|
| 85 |
|
| 86 |
with torch.no_grad(), torch.inference_mode():
|
| 87 |
outputs = model.generate(
|
| 88 |
+
input_ids=input_ids,
|
| 89 |
+
attention_mask=attention_mask,
|
| 90 |
generation_config=generation_config,
|
| 91 |
+
num_return_sequences=1,
|
| 92 |
+
output_scores=False,
|
| 93 |
+
return_dict_in_generate=False
|
| 94 |
)
|
| 95 |
|
| 96 |
+
generated_tokens = outputs[0][len(input_ids[0]):]
|
| 97 |
+
generated = tokenizer.decode(
|
| 98 |
+
generated_tokens,
|
| 99 |
+
skip_special_tokens=True,
|
| 100 |
+
clean_up_tokenization_spaces=True
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
log.info("📤 Resultado gerado:")
|
| 104 |
+
log.info(generated)
|
| 105 |
+
|
| 106 |
+
json_result = extract_json(generated)
|
| 107 |
|
|
|
|
| 108 |
duration = time.time() - start_time
|
| 109 |
log.info(f"✅ JSON extraído em {duration:.2f}s")
|
| 110 |
+
|
| 111 |
+
# Limpeza de memória
|
| 112 |
+
del outputs, generated_tokens, inputs
|
| 113 |
+
gc.collect()
|
| 114 |
+
|
| 115 |
+
if json_result:
|
| 116 |
+
return json_result
|
| 117 |
+
else:
|
| 118 |
+
raise HTTPException(status_code=404, detail="Unable to extract JSON from model output.")
|
| 119 |
+
|
| 120 |
+
def build_chat_prompt(title: str, content: str) -> str:
|
| 121 |
+
return f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
| 122 |
+
Analyze the news title and content, and return the filters in JSON format with the defined fields.
|
| 123 |
+
|
| 124 |
+
Please respond ONLY with the JSON filter, do NOT add any explanations, system messages, or extra text.
|
| 125 |
+
|
| 126 |
+
Title: "{title}"
|
| 127 |
+
Content: "{content}"<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
| 128 |
|
| 129 |
def extract_json(text):
|
| 130 |
+
match = re.search(r'\{[^{}]*(?:\{[^{}]*\}[^{}]*)*\}', text, re.DOTALL)
|
| 131 |
if match:
|
| 132 |
+
json_text = match.group(0)
|
| 133 |
+
|
| 134 |
+
# Conversões comuns
|
| 135 |
+
json_text = re.sub(r"'", '"', json_text)
|
| 136 |
+
json_text = re.sub(r'\bTrue\b', 'true', json_text)
|
| 137 |
+
json_text = re.sub(r'\bFalse\b', 'false', json_text)
|
| 138 |
+
json_text = re.sub(r",\s*}", "}", json_text)
|
| 139 |
+
json_text = re.sub(r",\s*]", "]", json_text)
|
| 140 |
+
return json_text.strip()
|
| 141 |
+
return text
|
| 142 |
+
|
| 143 |
+
# -------- API ROUTE --------
|
| 144 |
+
@app.get("/filter")
|
| 145 |
+
def get_filter(
|
| 146 |
+
title: str = Query(..., description="News title"),
|
| 147 |
+
content: str = Query(..., description="News content")
|
| 148 |
+
):
|
| 149 |
+
try:
|
| 150 |
+
json_output = infer_filter(title, content)
|
| 151 |
+
import json
|
| 152 |
+
try:
|
| 153 |
+
parsed = json.loads(json_output)
|
| 154 |
+
return {"result": parsed}
|
| 155 |
+
except json.JSONDecodeError as e:
|
| 156 |
+
log.error(f"❌ Erro ao parsear JSON: {e}")
|
| 157 |
+
return {"result": json_output, "warning": "JSON returned as string due to parsing error"}
|
| 158 |
+
except HTTPException as e:
|
| 159 |
+
raise e
|
| 160 |
+
except Exception as e:
|
| 161 |
+
log.exception("❌ Erro inesperado:")
|
| 162 |
+
raise HTTPException(status_code=500, detail="Internal server error during inference.")
|
| 163 |
+
|
| 164 |
+
@app.on_event("startup")
|
| 165 |
+
async def warmup():
|
| 166 |
+
log.info("🔥 Executando warmup...")
|
| 167 |
+
try:
|
| 168 |
+
infer_filter("Test title", "Test content")
|
| 169 |
+
log.info("✅ Warmup concluído.")
|
| 170 |
+
except Exception as e:
|
| 171 |
+
log.warning(f"⚠️ Warmup falhou: {e}")
|