File size: 17,790 Bytes
ff9a9d1
 
 
4c5e2e9
 
6110682
 
 
561b62b
6110682
a6621bf
 
 
 
561b62b
6110682
ff9a9d1
d2a0206
1d1b745
 
44ad3cd
ad16681
1d1b745
ff9a9d1
44ad3cd
 
4018215
 
de0ae9c
44ad3cd
 
4018215
 
 
 
 
44ad3cd
 
 
 
 
 
ff9a9d1
 
 
67f9f1a
 
 
 
 
 
 
ff9a9d1
1c77137
adb849f
ff9a9d1
67f9f1a
ff9a9d1
b5b8ac0
 
 
 
b0481a0
b5b8ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67f9f1a
 
 
ff9a9d1
67f9f1a
 
 
ff9a9d1
67f9f1a
 
 
 
ff9a9d1
67f9f1a
 
 
 
 
 
ff9a9d1
67f9f1a
 
 
 
 
 
 
 
ff9a9d1
67f9f1a
ff9a9d1
 
 
f11bee4
 
 
 
 
 
 
 
 
 
 
 
 
b5b8ac0
f11bee4
ff9a9d1
663543d
05dfe17
6110682
 
 
b5b8ac0
ff9a9d1
 
 
7bfef4d
 
ff9a9d1
67f9f1a
ff9a9d1
e230cf6
 
ff9a9d1
67f9f1a
 
 
 
1b551f6
ff9a9d1
 
e230cf6
 
ff9a9d1
 
 
 
61cea8a
67f9f1a
 
7bfef4d
 
 
 
 
e230cf6
 
7bfef4d
 
 
 
 
1b551f6
7bfef4d
 
e230cf6
 
7bfef4d
 
 
 
61cea8a
81d5504
67f9f1a
61cea8a
 
7bfef4d
 
 
e230cf6
 
7bfef4d
 
 
 
 
1b551f6
7bfef4d
 
e230cf6
 
7bfef4d
 
 
 
61cea8a
81d5504
7bfef4d
 
 
67f9f1a
 
 
 
 
 
 
 
 
 
 
7bfef4d
67f9f1a
7bfef4d
 
 
 
 
 
 
 
 
 
 
 
 
67f9f1a
 
5f7920b
 
7bfef4d
 
 
 
 
 
 
 
 
 
 
 
 
ff9a9d1
 
 
 
67f9f1a
ff9a9d1
 
67f9f1a
ff9a9d1
 
67f9f1a
 
ff9a9d1
7bfef4d
 
61cea8a
67f9f1a
 
 
7bfef4d
67f9f1a
 
ff9a9d1
67f9f1a
 
 
ff9a9d1
61cea8a
 
67f9f1a
 
 
 
7bfef4d
 
67f9f1a
 
 
 
 
 
 
 
 
 
 
 
ff9a9d1
 
7bfef4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61cea8a
 
7bfef4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff9a9d1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import subprocess
subprocess.run(['sh', './spaces.sh'])

import spaces

def install_torch():
    subprocess.run(['sh', './torch.sh'])

#install_torch()

@spaces.GPU(required=True)
def install_flashattn():
    subprocess.run(['sh', './flashattn.sh'])

#install_flashattn()

import os

os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'

import torch

torch.backends.cuda.matmul.allow_tf32 = False  #  torch 2.8
torch.backends.cudnn.allow_tf32 = False        #  torch 2.8

torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
#torch.backends.fp32_precision = "ieee"  torch 2.9
#torch.backends.cuda.matmul.fp32_precision = "ieee"  torch 2.9
#torch.backends.cudnn.fp32_precision = "ieee"  torch 2.9
#torch.backends.cudnn.conv.fp32_precision = "ieee"  torch 2.9
#torch.backends.cudnn.rnn.fp32_precision = "ieee"  torch 2.9
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")

import gradio as gr
import numpy as np
import random
import datetime
import threading
import io

# --- New GCS Imports ---
from google.oauth2 import service_account
from google.cloud import storage


from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from PIL import Image
from image_gen_aux import UpscaleWithModel


from diffusers.models.attention_processor import AttnProcessor2_0
from kernels import get_kernel
fa3_kernel = get_kernel("kernels-community/flash-attn3") # Or vllm-flash-attn3

class FlashAttentionProcessor(AttnProcessor2_0):
    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None, # This will be present for cross-attention
        attention_mask=None,
        temb=None, # This might be present in some attention mechanisms, pass through if not used directly
        **kwargs,
    ):
        # Determine if it's self-attention or cross-attention
        # For self-attention, encoder_hidden_states is None or identical to hidden_states
        is_cross_attention = encoder_hidden_states is not None and encoder_hidden_states.shape[1] != hidden_states.shape[1]
        # SD3.5 uses DiT, where hidden_states are often 3D (B, Seq, Dim)
        # However, attention can be within a transformer block which might internally reshape.
        # Ensure your inputs (query, key, value) are properly shaped for the kernel.
        # The kernel expects (Batch, Heads, Sequence, Dim_Head)
        query = attn.to_q(hidden_states)
        if is_cross_attention:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)
        else: # Self-attention
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
        scale = attn.scale
        query = query * scale
        b, t, c = query.shape # B=batch_size, T=sequence_length, C=embedding_dim
        h = attn.heads
        d = c // h # dim_per_head
        # Reshape to (Batch, Heads, Sequence, Dim_Head) for Flash Attention kernel
        q_reshaped = query.reshape(b, t, h, d).permute(0, 2, 1, 3)
        k_reshaped = key.reshape(b, t, h, d).permute(0, 2, 1, 3)
        v_reshaped = value.reshape(b, t, h, d).permute(0, 2, 1, 3)
        out_reshaped = torch.empty_like(q_reshaped)
        # Call the Flash Attention kernel
        fa3_kernel.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped)
        # Reshape output back to (Batch, Sequence, Heads * Dim_Head)
        out = out_reshaped.permute(0, 2, 1, 3).reshape(b, t, c)
        out = attn.to_out(out)
        return out

# Make sure to set these secrets in your Hugging Face Space settings
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string

# Initialize GCS client if credentials are available
gcs_client = None
if GCS_SA_KEY and GCS_BUCKET_NAME:
    try:
        credentials_info = eval(GCS_SA_KEY) # Using eval is safe here if you trust the secret source
        credentials = service_account.Credentials.from_service_account_info(credentials_info)
        gcs_client = storage.Client(credentials=credentials)
        print("✅ GCS Client initialized successfully.")
    except Exception as e:
        print(f"❌ Failed to initialize GCS client: {e}")

def upload_to_gcs(image_object, filename):
    if not gcs_client:
        print("⚠️ GCS client not initialized. Skipping upload.")
        return
    try:
        print(f"--> Starting GCS upload for {filename}...")
        bucket = gcs_client.bucket(GCS_BUCKET_NAME)
        blob = bucket.blob(f"stablediff/{filename}")
        img_byte_arr = io.BytesIO()
        image_object.save(img_byte_arr, format='PNG', optimize=False, compress_level=0)
        img_byte_arr = img_byte_arr.getvalue()
        blob.upload_from_string(img_byte_arr, content_type='image/png')
        print(f"✅ Successfully uploaded {filename} to GCS.")
    except Exception as e:
        print(f"❌ An error occurred during GCS upload: {e}")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def load_model():
    pipe = StableDiffusion3Pipeline.from_pretrained(
        "ford442/stable-diffusion-3.5-large-bf16",
        trust_remote_code=True,
        transformer=None, # Load transformer separately
        use_safetensors=True
    )
    ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16)
    pipe.transformer=ll_transformer
    pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
    pipe.to(device=device, dtype=torch.bfloat16)
    upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
    return pipe, upscaler_2
    
pipe, upscaler_2 = load_model()

fa_processor = FlashAttentionProcessor()

#for name, module in pipe.transformer.named_modules():
#    if isinstance(module, AttnProcessor2_0):
#        module.processor = fa_processor

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

@spaces.GPU(duration=45)
def generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    print('-- generating image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    sd_image = pipe(
        prompt=prompt, prompt_2=prompt, prompt_3=prompt,
        negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
        guidance_scale=guidance, num_inference_steps=steps,
        width=width, height=height, generator=generator,
        max_sequence_length=384
    ).images[0]
    print('-- got image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    with torch.no_grad():
        upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
        upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
    return sd_image, downscaled_upscale, prompt

@spaces.GPU(duration=70)
def generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    print('-- generating image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    sd_image = pipe(
        prompt=prompt, prompt_2=prompt, prompt_3=prompt,
        negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
        guidance_scale=guidance, num_inference_steps=steps,
        width=width, height=height, generator=generator,
        max_sequence_length=384
    ).images[0]
    print('-- got image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    with torch.no_grad():
        upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
        upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
    return downscaled_upscale, upscale, prompt

@spaces.GPU(duration=120)
def generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    print('-- generating image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    sd_image = pipe(
        prompt=prompt, prompt_2=prompt, prompt_3=prompt,
        negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
        guidance_scale=guidance, num_inference_steps=steps,
        width=width, height=height, generator=generator,
        max_sequence_length=384
    ).images[0]
    print('-- got image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    with torch.no_grad():
        upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
        upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
    return downscaled_upscale, upscale2, prompt

def run_inference_and_upload_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
    sd_image, upscaled_image, expanded_prompt = generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
    if save_consent:
        print("✅ User consented to save. Preparing uploads...")
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        sd_filename = f"sd35ll_{timestamp}.png"
        upscale_filename = f"sd35ll_upscale_{timestamp}.png"
        sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
        upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
        sd_thread.start()
        upscale_thread.start()
    else:
        print("ℹ️ User did not consent to save. Skipping upload.")
    return sd_image, expanded_prompt

def run_inference_and_upload_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
    sd_image, upscaled_image, expanded_prompt = generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
    if save_consent:
        print("✅ User consented to save. Preparing uploads...")
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        sd_filename = f"sd35ll_{timestamp}.png"
        upscale_filename = f"sd35ll_upscale_{timestamp}.png"
        sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
        upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
        sd_thread.start()
        upscale_thread.start()
    else:
        print("ℹ️ User did not consent to save. Skipping upload.")
    return sd_image, expanded_prompt

def run_inference_and_upload_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
    sd_image, upscaled_image, expanded_prompt = generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
    if save_consent:
        print("✅ User consented to save. Preparing uploads...")
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        sd_filename = f"sd35ll_{timestamp}.png"
        upscale_filename = f"sd35ll_upscale_{timestamp}.png"
        sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
        upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
        sd_thread.start()
        upscale_thread.start()
    else:
        print("ℹ️ User did not consent to save. Skipping upload.")
    return sd_image, expanded_prompt
    
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
        expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt", show_label=False, max_lines=1,
                placeholder="Enter your prompt", container=False,
            )
            run_button_30 = gr.Button("Run30", scale=0, variant="primary")
            run_button_60 = gr.Button("Run60", scale=0, variant="primary")
            run_button_110 = gr.Button("Run100", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False, type="pil")
        save_consent_checkbox = gr.Checkbox(
            label="✅ Anonymously upload result to a public gallery",
            value=True, # Default to not uploading
            info="Check this box to help us by contributing your image."
        )
        with gr.Accordion("Advanced Settings", open=True):
            negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition")
            negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)")
            negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)")
            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
            with gr.Row():
                guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2)
                num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60)

        run_button_30.click(
            fn=run_inference_and_upload_30,
            inputs=[
                prompt,
                negative_prompt_1,
                negative_prompt_2,
                negative_prompt_3,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                save_consent_checkbox # Pass the checkbox value
            ],
            outputs=[result, expanded_prompt_output],
        )

        run_button_60.click(
            fn=run_inference_and_upload_60,
            inputs=[
                prompt,
                negative_prompt_1,
                negative_prompt_2,
                negative_prompt_3,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                save_consent_checkbox # Pass the checkbox value
            ],
            outputs=[result, expanded_prompt_output],
        )

        run_button_110.click(
            fn=run_inference_and_upload_110,
            inputs=[
                prompt,
                negative_prompt_1,
                negative_prompt_2,
                negative_prompt_3,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                save_consent_checkbox # Pass the checkbox value
            ],
            outputs=[result, expanded_prompt_output],
        )
        

if __name__ == "__main__":
    demo.launch()