Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,8 +15,6 @@ import torch
|
|
| 15 |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 16 |
from typing import Tuple
|
| 17 |
import paramiko
|
| 18 |
-
import gc
|
| 19 |
-
import time
|
| 20 |
import datetime
|
| 21 |
from gradio import themes
|
| 22 |
from image_gen_aux import UpscaleWithModel
|
|
@@ -41,7 +39,7 @@ FTP_PASS = "GoogleBez12!"
|
|
| 41 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
| 42 |
|
| 43 |
DESCRIPTIONXX = """
|
| 44 |
-
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16
|
| 45 |
"""
|
| 46 |
|
| 47 |
examples = [
|
|
@@ -50,13 +48,8 @@ examples = [
|
|
| 50 |
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
|
| 51 |
]
|
| 52 |
|
| 53 |
-
MODEL_OPTIONS = {
|
| 54 |
-
"REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 58 |
-
|
| 59 |
-
ENABLE_CPU_OFFLOAD = 0
|
| 60 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 61 |
|
| 62 |
device = torch.device("cuda:0")
|
|
@@ -152,8 +145,6 @@ def load_and_prepare_model():
|
|
| 152 |
#pipe.vae = AutoencoderKL.from_pretrained('stabilityai/sdxl-vae-bf16',subfolder='vae')
|
| 153 |
#pipe.vae = AutoencoderKL.from_pretrained('stabilityai/sdxl-vae',subfolder='vae',force_upcast=False,scaling_factor= 0.182158767676)
|
| 154 |
#pipe.vae.to(torch.bfloat16)
|
| 155 |
-
|
| 156 |
-
|
| 157 |
|
| 158 |
'''
|
| 159 |
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
|
@@ -187,8 +178,8 @@ def load_and_prepare_model():
|
|
| 187 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 188 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 189 |
|
| 190 |
-
pipe.to(device
|
| 191 |
-
|
| 192 |
#apply_hidiffusion(pipe)
|
| 193 |
|
| 194 |
#pipe.unet.set_default_attn_processor()
|
|
@@ -239,9 +230,9 @@ def save_image(img):
|
|
| 239 |
return unique_name
|
| 240 |
|
| 241 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
| 242 |
-
filename= f'
|
| 243 |
with open(filename, "w") as f:
|
| 244 |
-
f.write(f"Realvis 5.0
|
| 245 |
f.write(f"Date/time: {timestamp} \n")
|
| 246 |
f.write(f"Prompt: {prompt} \n")
|
| 247 |
f.write(f"Steps: {num_inference_steps} \n")
|
|
@@ -250,10 +241,7 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
| 250 |
f.write(f"Use Model Dtype: no \n")
|
| 251 |
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
| 252 |
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
|
| 253 |
-
f.write(f"Model UNET:
|
| 254 |
-
f.write(f"Model HiDiffusion OFF \n")
|
| 255 |
-
f.write(f"Model do_resize ON \n")
|
| 256 |
-
f.write(f"added torch to prereq and changed accellerate \n")
|
| 257 |
upload_to_ftp(filename)
|
| 258 |
|
| 259 |
@spaces.GPU(duration=40)
|
|
@@ -302,7 +290,7 @@ def generate_30(
|
|
| 302 |
with torch.no_grad():
|
| 303 |
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 304 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 305 |
-
downscale_path = f"
|
| 306 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
| 307 |
upload_to_ftp(downscale_path)
|
| 308 |
image_paths = [save_image(downscale1)]
|
|
@@ -356,7 +344,7 @@ def generate_60(
|
|
| 356 |
with torch.no_grad():
|
| 357 |
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 358 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 359 |
-
downscale_path = f"
|
| 360 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
| 361 |
upload_to_ftp(downscale_path)
|
| 362 |
image_paths = [save_image(downscale1)]
|
|
@@ -410,7 +398,7 @@ def generate_90(
|
|
| 410 |
with torch.no_grad():
|
| 411 |
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 412 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 413 |
-
downscale_path = f"
|
| 414 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
| 415 |
upload_to_ftp(downscale_path)
|
| 416 |
image_paths = [save_image(downscale1)]
|
|
|
|
| 15 |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 16 |
from typing import Tuple
|
| 17 |
import paramiko
|
|
|
|
|
|
|
| 18 |
import datetime
|
| 19 |
from gradio import themes
|
| 20 |
from image_gen_aux import UpscaleWithModel
|
|
|
|
| 39 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
| 40 |
|
| 41 |
DESCRIPTIONXX = """
|
| 42 |
+
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 IP Adapter ⚡⚡⚡⚡
|
| 43 |
"""
|
| 44 |
|
| 45 |
examples = [
|
|
|
|
| 48 |
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
|
| 49 |
]
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 52 |
+
|
|
|
|
| 53 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 54 |
|
| 55 |
device = torch.device("cuda:0")
|
|
|
|
| 145 |
#pipe.vae = AutoencoderKL.from_pretrained('stabilityai/sdxl-vae-bf16',subfolder='vae')
|
| 146 |
#pipe.vae = AutoencoderKL.from_pretrained('stabilityai/sdxl-vae',subfolder='vae',force_upcast=False,scaling_factor= 0.182158767676)
|
| 147 |
#pipe.vae.to(torch.bfloat16)
|
|
|
|
|
|
|
| 148 |
|
| 149 |
'''
|
| 150 |
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
|
|
|
| 178 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 179 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 180 |
|
| 181 |
+
pipe.to(device) #=device, dtype=torch.bfloat16)
|
| 182 |
+
pipe.to(torch.bfloat16)
|
| 183 |
#apply_hidiffusion(pipe)
|
| 184 |
|
| 185 |
#pipe.unet.set_default_attn_processor()
|
|
|
|
| 230 |
return unique_name
|
| 231 |
|
| 232 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
| 233 |
+
filename= f'IP_{timestamp}.txt'
|
| 234 |
with open(filename, "w") as f:
|
| 235 |
+
f.write(f"Realvis 5.0 IP Adapter \n")
|
| 236 |
f.write(f"Date/time: {timestamp} \n")
|
| 237 |
f.write(f"Prompt: {prompt} \n")
|
| 238 |
f.write(f"Steps: {num_inference_steps} \n")
|
|
|
|
| 241 |
f.write(f"Use Model Dtype: no \n")
|
| 242 |
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
| 243 |
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
|
| 244 |
+
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
|
|
|
|
|
|
|
|
|
|
| 245 |
upload_to_ftp(filename)
|
| 246 |
|
| 247 |
@spaces.GPU(duration=40)
|
|
|
|
| 290 |
with torch.no_grad():
|
| 291 |
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 292 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 293 |
+
downscale_path = f"rvIP_upscale_{timestamp}.png"
|
| 294 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
| 295 |
upload_to_ftp(downscale_path)
|
| 296 |
image_paths = [save_image(downscale1)]
|
|
|
|
| 344 |
with torch.no_grad():
|
| 345 |
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 346 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 347 |
+
downscale_path = f"rvIP_upscale_{timestamp}.png"
|
| 348 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
| 349 |
upload_to_ftp(downscale_path)
|
| 350 |
image_paths = [save_image(downscale1)]
|
|
|
|
| 398 |
with torch.no_grad():
|
| 399 |
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 400 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 401 |
+
downscale_path = f"rvIP_upscale_{timestamp}.png"
|
| 402 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
| 403 |
upload_to_ftp(downscale_path)
|
| 404 |
image_paths = [save_image(downscale1)]
|