ford442 commited on
Commit
1d94921
·
verified ·
1 Parent(s): cac73c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -11
app.py CHANGED
@@ -218,6 +218,8 @@ def generate_30(
218
  pipe.text_encoder_2=text_encoder_2
219
  seed = random.randint(0, MAX_SEED)
220
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
 
221
  if latent_file is not None: # Check if a latent file is provided
222
  sd_image_a = Image.open(latent_file.name).convert('RGB')
223
  sd_image_a.resize((height,width), Image.LANCZOS)
@@ -269,6 +271,8 @@ def generate_30(
269
  upload_to_ftp(filename)
270
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
271
  torch.set_float32_matmul_precision("medium")
 
 
272
  with torch.no_grad():
273
  upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
274
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
@@ -309,25 +313,28 @@ def generate_60(
309
  pipe.text_encoder_2=text_encoder_2
310
  seed = random.randint(0, MAX_SEED)
311
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
 
312
  if latent_file is not None: # Check if a latent file is provided
313
- sd_image_a = Image.open(latent_file.name)
 
314
  if latent_file_2 is not None: # Check if a latent file is provided
315
- sd_image_b = Image.open(latent_file_2.name)
316
  sd_image_b.resize((height,width), Image.LANCZOS)
317
  else:
318
  sd_image_b = None
319
  if latent_file_3 is not None: # Check if a latent file is provided
320
- sd_image_c = Image.open(latent_file_3.name)
321
  sd_image_c.resize((height,width), Image.LANCZOS)
322
  else:
323
  sd_image_c = None
324
  if latent_file_4 is not None: # Check if a latent file is provided
325
- sd_image_d = Image.open(latent_file_4.name)
326
  sd_image_d.resize((height,width), Image.LANCZOS)
327
  else:
328
  sd_image_d = None
329
  if latent_file_5 is not None: # Check if a latent file is provided
330
- sd_image_e = Image.open(latent_file_5.name)
331
  sd_image_e.resize((height,width), Image.LANCZOS)
332
  else:
333
  sd_image_e = None
@@ -359,6 +366,8 @@ def generate_60(
359
  upload_to_ftp(filename)
360
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
361
  torch.set_float32_matmul_precision("medium")
 
 
362
  with torch.no_grad():
363
  upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
364
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
@@ -399,25 +408,28 @@ def generate_90(
399
  pipe.text_encoder_2=text_encoder_2
400
  seed = random.randint(0, MAX_SEED)
401
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
 
402
  if latent_file is not None: # Check if a latent file is provided
403
- sd_image_a = Image.open(latent_file.name)
 
404
  if latent_file_2 is not None: # Check if a latent file is provided
405
- sd_image_b = Image.open(latent_file_2.name)
406
  sd_image_b.resize((height,width), Image.LANCZOS)
407
  else:
408
  sd_image_b = None
409
  if latent_file_3 is not None: # Check if a latent file is provided
410
- sd_image_c = Image.open(latent_file_3.name)
411
  sd_image_c.resize((height,width), Image.LANCZOS)
412
  else:
413
  sd_image_c = None
414
  if latent_file_4 is not None: # Check if a latent file is provided
415
- sd_image_d = Image.open(latent_file_4.name)
416
  sd_image_d.resize((height,width), Image.LANCZOS)
417
  else:
418
  sd_image_d = None
419
  if latent_file_5 is not None: # Check if a latent file is provided
420
- sd_image_e = Image.open(latent_file_5.name)
421
  sd_image_e.resize((height,width), Image.LANCZOS)
422
  else:
423
  sd_image_e = None
@@ -425,7 +437,6 @@ def generate_90(
425
  filename= f'rv_IP_{timestamp}.png'
426
  print("-- using image file --")
427
  print('-- generating image --')
428
- #with torch.no_grad():
429
  sd_image = ip_model.generate(
430
  pil_image_1=sd_image_a,
431
  pil_image_2=sd_image_b,
@@ -450,6 +461,8 @@ def generate_90(
450
  upload_to_ftp(filename)
451
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
452
  torch.set_float32_matmul_precision("medium")
 
 
453
  with torch.no_grad():
454
  upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
455
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
 
218
  pipe.text_encoder_2=text_encoder_2
219
  seed = random.randint(0, MAX_SEED)
220
  generator = torch.Generator(device='cuda').manual_seed(seed)
221
+ torch.cuda.empty_cache()
222
+ torch.cuda.reset_peak_memory_stats()
223
  if latent_file is not None: # Check if a latent file is provided
224
  sd_image_a = Image.open(latent_file.name).convert('RGB')
225
  sd_image_a.resize((height,width), Image.LANCZOS)
 
271
  upload_to_ftp(filename)
272
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
273
  torch.set_float32_matmul_precision("medium")
274
+ torch.cuda.empty_cache()
275
+ torch.cuda.reset_peak_memory_stats()
276
  with torch.no_grad():
277
  upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
278
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
 
313
  pipe.text_encoder_2=text_encoder_2
314
  seed = random.randint(0, MAX_SEED)
315
  generator = torch.Generator(device='cuda').manual_seed(seed)
316
+ torch.cuda.empty_cache()
317
+ torch.cuda.reset_peak_memory_stats()
318
  if latent_file is not None: # Check if a latent file is provided
319
+ sd_image_a = Image.open(latent_file.name).convert('RGB')
320
+ sd_image_a.resize((height,width), Image.LANCZOS)
321
  if latent_file_2 is not None: # Check if a latent file is provided
322
+ sd_image_b = Image.open(latent_file_2.name).convert('RGB')
323
  sd_image_b.resize((height,width), Image.LANCZOS)
324
  else:
325
  sd_image_b = None
326
  if latent_file_3 is not None: # Check if a latent file is provided
327
+ sd_image_c = Image.open(latent_file_3.name).convert('RGB')
328
  sd_image_c.resize((height,width), Image.LANCZOS)
329
  else:
330
  sd_image_c = None
331
  if latent_file_4 is not None: # Check if a latent file is provided
332
+ sd_image_d = Image.open(latent_file_4.name).convert('RGB')
333
  sd_image_d.resize((height,width), Image.LANCZOS)
334
  else:
335
  sd_image_d = None
336
  if latent_file_5 is not None: # Check if a latent file is provided
337
+ sd_image_e = Image.open(latent_file_5.name).convert('RGB')
338
  sd_image_e.resize((height,width), Image.LANCZOS)
339
  else:
340
  sd_image_e = None
 
366
  upload_to_ftp(filename)
367
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
368
  torch.set_float32_matmul_precision("medium")
369
+ torch.cuda.empty_cache()
370
+ torch.cuda.reset_peak_memory_stats()
371
  with torch.no_grad():
372
  upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
373
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
 
408
  pipe.text_encoder_2=text_encoder_2
409
  seed = random.randint(0, MAX_SEED)
410
  generator = torch.Generator(device='cuda').manual_seed(seed)
411
+ torch.cuda.empty_cache()
412
+ torch.cuda.reset_peak_memory_stats()
413
  if latent_file is not None: # Check if a latent file is provided
414
+ sd_image_a = Image.open(latent_file.name).convert('RGB')
415
+ sd_image_a.resize((height,width), Image.LANCZOS)
416
  if latent_file_2 is not None: # Check if a latent file is provided
417
+ sd_image_b = Image.open(latent_file_2.name).convert('RGB')
418
  sd_image_b.resize((height,width), Image.LANCZOS)
419
  else:
420
  sd_image_b = None
421
  if latent_file_3 is not None: # Check if a latent file is provided
422
+ sd_image_c = Image.open(latent_file_3.name).convert('RGB')
423
  sd_image_c.resize((height,width), Image.LANCZOS)
424
  else:
425
  sd_image_c = None
426
  if latent_file_4 is not None: # Check if a latent file is provided
427
+ sd_image_d = Image.open(latent_file_4.name).convert('RGB')
428
  sd_image_d.resize((height,width), Image.LANCZOS)
429
  else:
430
  sd_image_d = None
431
  if latent_file_5 is not None: # Check if a latent file is provided
432
+ sd_image_e = Image.open(latent_file_5.name).convert('RGB')
433
  sd_image_e.resize((height,width), Image.LANCZOS)
434
  else:
435
  sd_image_e = None
 
437
  filename= f'rv_IP_{timestamp}.png'
438
  print("-- using image file --")
439
  print('-- generating image --')
 
440
  sd_image = ip_model.generate(
441
  pil_image_1=sd_image_a,
442
  pil_image_2=sd_image_b,
 
461
  upload_to_ftp(filename)
462
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
463
  torch.set_float32_matmul_precision("medium")
464
+ torch.cuda.empty_cache()
465
+ torch.cuda.reset_peak_memory_stats()
466
  with torch.no_grad():
467
  upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
468
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)