Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ import glob
|
|
| 9 |
import random
|
| 10 |
import numpy as np
|
| 11 |
import re
|
|
|
|
| 12 |
|
| 13 |
# Import necessary functions and classes
|
| 14 |
from utils import load_t5, load_clap
|
|
@@ -71,12 +72,24 @@ def unload_current_model():
|
|
| 71 |
global_model = None
|
| 72 |
current_model_name = None
|
| 73 |
|
| 74 |
-
def load_model(model_name):
|
| 75 |
global global_model, current_model_name
|
| 76 |
-
device = "cpu" # Force CPU usage
|
| 77 |
|
| 78 |
unload_current_model()
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
# Determine model size from filename
|
| 81 |
if 'musicflow_b' in model_name:
|
| 82 |
model_size = "base"
|
|
@@ -91,7 +104,6 @@ def load_model(model_name):
|
|
| 91 |
|
| 92 |
print(f"Loading {model_size} model: {model_name}")
|
| 93 |
|
| 94 |
-
model_path = os.path.join(MODELS_DIR, model_name)
|
| 95 |
global_model = build_model(model_size).to(device)
|
| 96 |
|
| 97 |
try:
|
|
@@ -106,11 +118,9 @@ def load_model(model_name):
|
|
| 106 |
print(f"Error loading model {model_name}: {str(e)}")
|
| 107 |
return f"Failed to load model: {model_name}. Error: {str(e)}"
|
| 108 |
|
| 109 |
-
def load_resources():
|
| 110 |
global global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
| 111 |
|
| 112 |
-
device = "cpu"
|
| 113 |
-
|
| 114 |
print("Loading T5 and CLAP models...")
|
| 115 |
global_t5 = load_t5(device, max_length=256)
|
| 116 |
global_clap = load_clap(device, max_length=256)
|
|
@@ -124,7 +134,7 @@ def load_resources():
|
|
| 124 |
|
| 125 |
print("Base resources loaded successfully!")
|
| 126 |
|
| 127 |
-
def generate_music(prompt, seed, cfg_scale, steps, duration, batch_size=4, progress=gr.Progress()):
|
| 128 |
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
| 129 |
|
| 130 |
if global_model is None:
|
|
@@ -134,7 +144,6 @@ def generate_music(prompt, seed, cfg_scale, steps, duration, batch_size=4, progr
|
|
| 134 |
seed = random.randint(1, 1000000)
|
| 135 |
print(f"Using seed: {seed}")
|
| 136 |
|
| 137 |
-
device = "cpu"
|
| 138 |
torch.manual_seed(seed)
|
| 139 |
torch.set_grad_enabled(False)
|
| 140 |
|
|
@@ -226,9 +235,6 @@ def generate_music(prompt, seed, cfg_scale, steps, duration, batch_size=4, progr
|
|
| 226 |
progress(1.0, desc="Audio generation complete")
|
| 227 |
return f"Generated with seed: {seed}", output_path
|
| 228 |
|
| 229 |
-
# Load base resources at startup
|
| 230 |
-
load_resources()
|
| 231 |
-
|
| 232 |
# Get list of .pt files in the models directory
|
| 233 |
model_files = glob.glob(os.path.join(MODELS_DIR, "*.pt"))
|
| 234 |
model_choices = [os.path.basename(f) for f in model_files]
|
|
@@ -258,11 +264,14 @@ with gr.Blocks(theme=theme) as iface:
|
|
| 258 |
<div style="text-align: center;">
|
| 259 |
<h1>FluxMusic Generator</h1>
|
| 260 |
<p>Generate music based on text prompts using FluxMusic model.</p>
|
|
|
|
| 261 |
</div>
|
| 262 |
""")
|
| 263 |
|
| 264 |
with gr.Row():
|
| 265 |
model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=default_model)
|
|
|
|
|
|
|
| 266 |
load_model_button = gr.Button("Load Model")
|
| 267 |
model_status = gr.Textbox(label="Model Status", value="No model loaded")
|
| 268 |
|
|
@@ -279,15 +288,18 @@ with gr.Blocks(theme=theme) as iface:
|
|
| 279 |
output_status = gr.Textbox(label="Generation Status")
|
| 280 |
output_audio = gr.Audio(type="filepath")
|
| 281 |
|
| 282 |
-
def on_load_model_click(model_name):
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
| 284 |
return result
|
| 285 |
|
| 286 |
-
load_model_button.click(on_load_model_click, inputs=[model_dropdown], outputs=[model_status])
|
| 287 |
-
generate_button.click(generate_music, inputs=[prompt, seed, cfg_scale, steps, duration], outputs=[output_status, output_audio])
|
| 288 |
|
| 289 |
-
# Load default model on startup
|
| 290 |
-
iface.load(lambda: on_load_model_click(default_model), inputs=None, outputs=None)
|
| 291 |
|
| 292 |
# Launch the interface
|
| 293 |
iface.launch()
|
|
|
|
| 9 |
import random
|
| 10 |
import numpy as np
|
| 11 |
import re
|
| 12 |
+
import requests
|
| 13 |
|
| 14 |
# Import necessary functions and classes
|
| 15 |
from utils import load_t5, load_clap
|
|
|
|
| 72 |
global_model = None
|
| 73 |
current_model_name = None
|
| 74 |
|
| 75 |
+
def load_model(model_name, device, model_url=None):
|
| 76 |
global global_model, current_model_name
|
|
|
|
| 77 |
|
| 78 |
unload_current_model()
|
| 79 |
|
| 80 |
+
if model_url:
|
| 81 |
+
print(f"Downloading model from URL: {model_url}")
|
| 82 |
+
response = requests.get(model_url)
|
| 83 |
+
if response.status_code == 200:
|
| 84 |
+
model_path = os.path.join(MODELS_DIR, "downloaded_model.pt")
|
| 85 |
+
with open(model_path, 'wb') as f:
|
| 86 |
+
f.write(response.content)
|
| 87 |
+
model_name = "downloaded_model.pt"
|
| 88 |
+
else:
|
| 89 |
+
return f"Failed to download model from URL: {model_url}"
|
| 90 |
+
else:
|
| 91 |
+
model_path = os.path.join(MODELS_DIR, model_name)
|
| 92 |
+
|
| 93 |
# Determine model size from filename
|
| 94 |
if 'musicflow_b' in model_name:
|
| 95 |
model_size = "base"
|
|
|
|
| 104 |
|
| 105 |
print(f"Loading {model_size} model: {model_name}")
|
| 106 |
|
|
|
|
| 107 |
global_model = build_model(model_size).to(device)
|
| 108 |
|
| 109 |
try:
|
|
|
|
| 118 |
print(f"Error loading model {model_name}: {str(e)}")
|
| 119 |
return f"Failed to load model: {model_name}. Error: {str(e)}"
|
| 120 |
|
| 121 |
+
def load_resources(device):
|
| 122 |
global global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
| 123 |
|
|
|
|
|
|
|
| 124 |
print("Loading T5 and CLAP models...")
|
| 125 |
global_t5 = load_t5(device, max_length=256)
|
| 126 |
global_clap = load_clap(device, max_length=256)
|
|
|
|
| 134 |
|
| 135 |
print("Base resources loaded successfully!")
|
| 136 |
|
| 137 |
+
def generate_music(prompt, seed, cfg_scale, steps, duration, device, batch_size=4, progress=gr.Progress()):
|
| 138 |
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
| 139 |
|
| 140 |
if global_model is None:
|
|
|
|
| 144 |
seed = random.randint(1, 1000000)
|
| 145 |
print(f"Using seed: {seed}")
|
| 146 |
|
|
|
|
| 147 |
torch.manual_seed(seed)
|
| 148 |
torch.set_grad_enabled(False)
|
| 149 |
|
|
|
|
| 235 |
progress(1.0, desc="Audio generation complete")
|
| 236 |
return f"Generated with seed: {seed}", output_path
|
| 237 |
|
|
|
|
|
|
|
|
|
|
| 238 |
# Get list of .pt files in the models directory
|
| 239 |
model_files = glob.glob(os.path.join(MODELS_DIR, "*.pt"))
|
| 240 |
model_choices = [os.path.basename(f) for f in model_files]
|
|
|
|
| 264 |
<div style="text-align: center;">
|
| 265 |
<h1>FluxMusic Generator</h1>
|
| 266 |
<p>Generate music based on text prompts using FluxMusic model.</p>
|
| 267 |
+
<p>Feel free to clone this space and run on GPU locally or on Hugging Face.</p>
|
| 268 |
</div>
|
| 269 |
""")
|
| 270 |
|
| 271 |
with gr.Row():
|
| 272 |
model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=default_model)
|
| 273 |
+
model_url = gr.Textbox(label="Or enter model URL")
|
| 274 |
+
device_choice = gr.Radio(["cpu", "cuda"], label="Device", value="cpu")
|
| 275 |
load_model_button = gr.Button("Load Model")
|
| 276 |
model_status = gr.Textbox(label="Model Status", value="No model loaded")
|
| 277 |
|
|
|
|
| 288 |
output_status = gr.Textbox(label="Generation Status")
|
| 289 |
output_audio = gr.Audio(type="filepath")
|
| 290 |
|
| 291 |
+
def on_load_model_click(model_name, device, url):
|
| 292 |
+
if url:
|
| 293 |
+
result = load_model(None, device, model_url=url)
|
| 294 |
+
else:
|
| 295 |
+
result = load_model(model_name, device)
|
| 296 |
return result
|
| 297 |
|
| 298 |
+
load_model_button.click(on_load_model_click, inputs=[model_dropdown, device_choice, model_url], outputs=[model_status])
|
| 299 |
+
generate_button.click(generate_music, inputs=[prompt, seed, cfg_scale, steps, duration, device_choice], outputs=[output_status, output_audio])
|
| 300 |
|
| 301 |
+
# Load default model and resources on startup
|
| 302 |
+
iface.load(lambda: (load_resources("cpu"), on_load_model_click(default_model, "cpu", None)), inputs=None, outputs=None)
|
| 303 |
|
| 304 |
# Launch the interface
|
| 305 |
iface.launch()
|