Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,7 +29,40 @@ current_model_name = None
|
|
| 29 |
MODELS_DIR = os.path.join(os.path.dirname(__file__), "models")
|
| 30 |
GENERATIONS_DIR = os.path.join(os.path.dirname(__file__), "generations")
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def unload_current_model():
|
| 35 |
global global_model, current_model_name
|
|
@@ -89,11 +122,175 @@ def load_model(model_name, device, model_url=None):
|
|
| 89 |
print(f"Error loading model {model_name}: {str(e)}")
|
| 90 |
return f"Failed to load model: {model_name}. Error: {str(e)}"
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
# Gradio Interface
|
| 95 |
with gr.Blocks(theme=theme) as iface:
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
def on_load_model_click(model_name, device, url):
|
| 99 |
if url:
|
|
|
|
| 29 |
MODELS_DIR = os.path.join(os.path.dirname(__file__), "models")
|
| 30 |
GENERATIONS_DIR = os.path.join(os.path.dirname(__file__), "generations")
|
| 31 |
|
| 32 |
+
def prepare(t5, clip, img, prompt):
|
| 33 |
+
bs, c, h, w = img.shape
|
| 34 |
+
if bs == 1 and not isinstance(prompt, str):
|
| 35 |
+
bs = len(prompt)
|
| 36 |
+
|
| 37 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
| 38 |
+
if img.shape[0] == 1 and bs > 1:
|
| 39 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
| 40 |
+
|
| 41 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
| 42 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
| 43 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
| 44 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
| 45 |
+
|
| 46 |
+
if isinstance(prompt, str):
|
| 47 |
+
prompt = [prompt]
|
| 48 |
+
|
| 49 |
+
# Generate text embeddings
|
| 50 |
+
txt = t5(prompt)
|
| 51 |
+
|
| 52 |
+
if txt.shape[0] == 1 and bs > 1:
|
| 53 |
+
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
| 54 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
| 55 |
+
|
| 56 |
+
vec = clip(prompt)
|
| 57 |
+
if vec.shape[0] == 1 and bs > 1:
|
| 58 |
+
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
| 59 |
+
|
| 60 |
+
return img, {
|
| 61 |
+
"img_ids": img_ids.to(img.device),
|
| 62 |
+
"txt": txt.to(img.device),
|
| 63 |
+
"txt_ids": txt_ids.to(img.device),
|
| 64 |
+
"y": vec.to(img.device),
|
| 65 |
+
}
|
| 66 |
|
| 67 |
def unload_current_model():
|
| 68 |
global global_model, current_model_name
|
|
|
|
| 122 |
print(f"Error loading model {model_name}: {str(e)}")
|
| 123 |
return f"Failed to load model: {model_name}. Error: {str(e)}"
|
| 124 |
|
| 125 |
+
def load_resources(device):
|
| 126 |
+
global global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
| 127 |
+
|
| 128 |
+
print("Loading T5 and CLAP models...")
|
| 129 |
+
global_t5 = load_t5(device, max_length=256)
|
| 130 |
+
global_clap = load_clap(device, max_length=256)
|
| 131 |
+
|
| 132 |
+
print("Loading VAE and vocoder...")
|
| 133 |
+
global_vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder="vae").to(device)
|
| 134 |
+
global_vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder="vocoder").to(device)
|
| 135 |
+
|
| 136 |
+
print("Initializing diffusion...")
|
| 137 |
+
global_diffusion = RF()
|
| 138 |
+
|
| 139 |
+
print("Base resources loaded successfully!")
|
| 140 |
+
|
| 141 |
+
def generate_music(prompt, seed, cfg_scale, steps, duration, device, batch_size=4, progress=gr.Progress()):
|
| 142 |
+
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
| 143 |
+
|
| 144 |
+
if global_model is None:
|
| 145 |
+
return "Please select and load a model first.", None
|
| 146 |
+
|
| 147 |
+
if seed == 0:
|
| 148 |
+
seed = random.randint(1, 1000000)
|
| 149 |
+
print(f"Using seed: {seed}")
|
| 150 |
+
|
| 151 |
+
torch.manual_seed(seed)
|
| 152 |
+
torch.set_grad_enabled(False)
|
| 153 |
+
|
| 154 |
+
# Calculate the number of segments needed for the desired duration
|
| 155 |
+
segment_duration = 10 # Each segment is 10 seconds
|
| 156 |
+
num_segments = int(np.ceil(duration / segment_duration))
|
| 157 |
+
|
| 158 |
+
all_waveforms = []
|
| 159 |
+
|
| 160 |
+
for i in range(num_segments):
|
| 161 |
+
progress(i / num_segments, desc=f"Generating segment {i+1}/{num_segments}")
|
| 162 |
+
|
| 163 |
+
# Use the same seed for all segments
|
| 164 |
+
torch.manual_seed(seed + i) # Add i to slightly vary each segment while maintaining consistency
|
| 165 |
+
|
| 166 |
+
latent_size = (256, 16)
|
| 167 |
+
conds_txt = [prompt]
|
| 168 |
+
unconds_txt = ["low quality, gentle"]
|
| 169 |
+
L = len(conds_txt)
|
| 170 |
+
|
| 171 |
+
init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)
|
| 172 |
+
|
| 173 |
+
img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
|
| 174 |
+
_, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)
|
| 175 |
+
|
| 176 |
+
# Implement batching for CPU inference
|
| 177 |
+
images = []
|
| 178 |
+
for batch_start in range(0, img.shape[0], batch_size):
|
| 179 |
+
batch_end = min(batch_start + batch_size, img.shape[0])
|
| 180 |
+
batch_img = img[batch_start:batch_end]
|
| 181 |
+
batch_conds = {k: v[batch_start:batch_end] for k, v in conds.items()}
|
| 182 |
+
batch_unconds = {k: v[batch_start:batch_end] for k, v in unconds.items()}
|
| 183 |
+
|
| 184 |
+
with torch.no_grad():
|
| 185 |
+
batch_images = global_diffusion.sample_with_xps(
|
| 186 |
+
global_model, batch_img, conds=batch_conds, null_cond=batch_unconds,
|
| 187 |
+
sample_steps=steps, cfg=cfg_scale
|
| 188 |
+
)
|
| 189 |
+
images.append(batch_images[-1])
|
| 190 |
+
|
| 191 |
+
images = torch.cat(images, dim=0)
|
| 192 |
+
|
| 193 |
+
images = rearrange(
|
| 194 |
+
images,
|
| 195 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
| 196 |
+
h=128,
|
| 197 |
+
w=8,
|
| 198 |
+
ph=2,
|
| 199 |
+
pw=2,)
|
| 200 |
+
|
| 201 |
+
latents = 1 / global_vae.config.scaling_factor * images
|
| 202 |
+
mel_spectrogram = global_vae.decode(latents).sample
|
| 203 |
+
|
| 204 |
+
x_i = mel_spectrogram[0]
|
| 205 |
+
if x_i.dim() == 4:
|
| 206 |
+
x_i = x_i.squeeze(1)
|
| 207 |
+
waveform = global_vocoder(x_i)
|
| 208 |
+
waveform = waveform[0].cpu().float().detach().numpy()
|
| 209 |
+
|
| 210 |
+
all_waveforms.append(waveform)
|
| 211 |
+
|
| 212 |
+
# Concatenate all waveforms
|
| 213 |
+
final_waveform = np.concatenate(all_waveforms)
|
| 214 |
+
|
| 215 |
+
# Trim to exact duration
|
| 216 |
+
sample_rate = 16000
|
| 217 |
+
final_waveform = final_waveform[:int(duration * sample_rate)]
|
| 218 |
+
|
| 219 |
+
progress(0.9, desc="Saving audio file")
|
| 220 |
+
|
| 221 |
+
# Create 'generations' folder
|
| 222 |
+
os.makedirs(GENERATIONS_DIR, exist_ok=True)
|
| 223 |
+
|
| 224 |
+
# Generate filename
|
| 225 |
+
prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
|
| 226 |
+
model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
|
| 227 |
+
model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
|
| 228 |
+
base_filename = f"{prompt_part}_{seed}{model_suffix}"
|
| 229 |
+
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}.wav")
|
| 230 |
+
|
| 231 |
+
# Check if file exists and add numerical suffix if needed
|
| 232 |
+
counter = 1
|
| 233 |
+
while os.path.exists(output_path):
|
| 234 |
+
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}_{counter}.wav")
|
| 235 |
+
counter += 1
|
| 236 |
+
|
| 237 |
+
wavfile.write(output_path, sample_rate, final_waveform)
|
| 238 |
+
|
| 239 |
+
progress(1.0, desc="Audio generation complete")
|
| 240 |
+
return f"Generated with seed: {seed}", output_path
|
| 241 |
+
|
| 242 |
+
# Get list of .pt files in the models directory
|
| 243 |
+
model_files = glob.glob(os.path.join(MODELS_DIR, "*.pt"))
|
| 244 |
+
model_choices = [os.path.basename(f) for f in model_files]
|
| 245 |
+
|
| 246 |
+
# Ensure we have at least one model
|
| 247 |
+
if not model_choices:
|
| 248 |
+
print(f"No models found in the models directory: {MODELS_DIR}")
|
| 249 |
+
print("Available files in the directory:")
|
| 250 |
+
print(os.listdir(MODELS_DIR))
|
| 251 |
+
model_choices = ["No models available"]
|
| 252 |
+
|
| 253 |
+
# Set default model
|
| 254 |
+
default_model = 'musicflow_b.pt' if 'musicflow_b.pt' in model_choices else model_choices[0]
|
| 255 |
+
|
| 256 |
+
# Set up dark grey theme
|
| 257 |
+
theme = gr.themes.Monochrome(
|
| 258 |
+
primary_hue="gray",
|
| 259 |
+
secondary_hue="gray",
|
| 260 |
+
neutral_hue="gray",
|
| 261 |
+
radius_size=gr.themes.sizes.radius_sm,
|
| 262 |
+
)
|
| 263 |
|
| 264 |
# Gradio Interface
|
| 265 |
with gr.Blocks(theme=theme) as iface:
|
| 266 |
+
gr.Markdown(
|
| 267 |
+
"""
|
| 268 |
+
<div style="text-align: center;">
|
| 269 |
+
<h1>FluxMusic Generator</h1>
|
| 270 |
+
<p>Generate music based on text prompts using FluxMusic model.</p>
|
| 271 |
+
<p>Feel free to clone this space and run on GPU locally or on Hugging Face.</p>
|
| 272 |
+
</div>
|
| 273 |
+
""")
|
| 274 |
+
|
| 275 |
+
with gr.Row():
|
| 276 |
+
model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=default_model)
|
| 277 |
+
model_url = gr.Textbox(label="Or enter model URL")
|
| 278 |
+
device_choice = gr.Radio(["cpu", "cuda"], label="Device", value="cpu")
|
| 279 |
+
load_model_button = gr.Button("Load Model")
|
| 280 |
+
model_status = gr.Textbox(label="Model Status", value="No model loaded")
|
| 281 |
+
|
| 282 |
+
with gr.Row():
|
| 283 |
+
prompt = gr.Textbox(label="Prompt")
|
| 284 |
+
seed = gr.Number(label="Seed", value=0)
|
| 285 |
+
|
| 286 |
+
with gr.Row():
|
| 287 |
+
cfg_scale = gr.Slider(minimum=1, maximum=40, step=0.1, label="CFG Scale", value=20)
|
| 288 |
+
steps = gr.Slider(minimum=10, maximum=200, step=1, label="Steps", value=100)
|
| 289 |
+
duration = gr.Number(label="Duration (seconds)", value=10, minimum=10, maximum=300, step=1)
|
| 290 |
+
|
| 291 |
+
generate_button = gr.Button("Generate Music")
|
| 292 |
+
output_status = gr.Textbox(label="Generation Status")
|
| 293 |
+
output_audio = gr.Audio(type="filepath")
|
| 294 |
|
| 295 |
def on_load_model_click(model_name, device, url):
|
| 296 |
if url:
|