Spaces:
Runtime error
Runtime error
mp3 gradio, rss logic
Browse files- app.py +63 -3
- requirements.txt +3 -1
- rss.xml +2 -2
- update-rss.py +42 -0
app.py
CHANGED
|
@@ -10,10 +10,19 @@ import time
|
|
| 10 |
import pymupdf
|
| 11 |
import requests
|
| 12 |
from pathlib import Path
|
|
|
|
|
|
|
| 13 |
|
| 14 |
import torch
|
| 15 |
from huggingface_hub import InferenceClient
|
| 16 |
from kokoro import KModel, KPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# -----------------------------------------------------------------------------
|
| 18 |
# Get default podcast materials, from Daily papers and one download
|
| 19 |
# -----------------------------------------------------------------------------
|
|
@@ -60,6 +69,34 @@ def generate_podcast_script(subject: str, steering_question: str | None = None)
|
|
| 60 |
podcast_text = full_text[dialogue_start_index:]
|
| 61 |
return podcast_text
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# -----------------------------------------------------------------------------
|
| 64 |
# Kokoro TTS
|
| 65 |
# -----------------------------------------------------------------------------
|
|
@@ -109,9 +146,32 @@ def generate_podcast(topic: str):
|
|
| 109 |
t0 = time.time()
|
| 110 |
ref_s = pipeline_voice[len(ps) - 1]
|
| 111 |
audio_numpy = kmodel(ps, ref_s, speed).numpy()
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
t1 = time.time()
|
| 114 |
-
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds.
|
|
|
|
| 115 |
|
| 116 |
EXAMPLES = [
|
| 117 |
["https://huggingface.co/blog/inference-providers-cohere", None, "How does using this compare with other inference solutions?"],
|
|
@@ -132,7 +192,7 @@ Based on [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M) and [Llama-3.3-
|
|
| 132 |
outputs=[
|
| 133 |
gr.Audio(
|
| 134 |
label="Listen to your podcast! 🔊",
|
| 135 |
-
format="
|
| 136 |
streaming=True,
|
| 137 |
),
|
| 138 |
],
|
|
|
|
| 10 |
import pymupdf
|
| 11 |
import requests
|
| 12 |
from pathlib import Path
|
| 13 |
+
from pydub import AudioSegment # Add this import
|
| 14 |
+
import tempfile
|
| 15 |
|
| 16 |
import torch
|
| 17 |
from huggingface_hub import InferenceClient
|
| 18 |
from kokoro import KModel, KPipeline
|
| 19 |
+
|
| 20 |
+
# -----------------------------------------------------------------------------
|
| 21 |
+
# to-do
|
| 22 |
+
# - Add field for the podcast title and description
|
| 23 |
+
# - add field for the script
|
| 24 |
+
# -----------------------------------------------------------------------------
|
| 25 |
+
|
| 26 |
# -----------------------------------------------------------------------------
|
| 27 |
# Get default podcast materials, from Daily papers and one download
|
| 28 |
# -----------------------------------------------------------------------------
|
|
|
|
| 69 |
podcast_text = full_text[dialogue_start_index:]
|
| 70 |
return podcast_text
|
| 71 |
|
| 72 |
+
def generate_headline_and_description(subject: str, steering_question: str | None = None) -> tuple[str, str]:
|
| 73 |
+
"""Ask the LLM for a headline and a short description for the podcast episode."""
|
| 74 |
+
prompt = f"""You are a world-class podcast producer. Given the following paper or topic, generate:
|
| 75 |
+
1. A catchy, informative headline for a podcast episode about it (max 15 words).
|
| 76 |
+
2. A short, engaging description (2-3 sentences, max 60 words) that summarizes what listeners will learn or why the topic is exciting.
|
| 77 |
+
|
| 78 |
+
Here is the topic:
|
| 79 |
+
{subject[:10000]}
|
| 80 |
+
"""
|
| 81 |
+
messages = [
|
| 82 |
+
{"role": "system", "content": "You are a world-class podcast producer."},
|
| 83 |
+
{"role": "user", "content": prompt},
|
| 84 |
+
]
|
| 85 |
+
response = client.chat_completion(
|
| 86 |
+
messages,
|
| 87 |
+
max_tokens=512,
|
| 88 |
+
)
|
| 89 |
+
full_text = response.choices[0].message.content.strip()
|
| 90 |
+
# Try to split headline and description
|
| 91 |
+
lines = [l.strip() for l in full_text.splitlines() if l.strip()]
|
| 92 |
+
if len(lines) >= 2:
|
| 93 |
+
headline = lines[0]
|
| 94 |
+
description = " ".join(lines[1:])
|
| 95 |
+
else:
|
| 96 |
+
headline = full_text[:80]
|
| 97 |
+
description = full_text
|
| 98 |
+
return headline, description
|
| 99 |
+
|
| 100 |
# -----------------------------------------------------------------------------
|
| 101 |
# Kokoro TTS
|
| 102 |
# -----------------------------------------------------------------------------
|
|
|
|
| 146 |
t0 = time.time()
|
| 147 |
ref_s = pipeline_voice[len(ps) - 1]
|
| 148 |
audio_numpy = kmodel(ps, ref_s, speed).numpy()
|
| 149 |
+
|
| 150 |
+
# Convert numpy array to MP3
|
| 151 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
|
| 152 |
+
sf.write(temp_wav.name, audio_numpy, sr)
|
| 153 |
+
temp_wav_path = temp_wav.name
|
| 154 |
+
|
| 155 |
+
# Use pydub to convert WAV to MP3
|
| 156 |
+
audio_segment = AudioSegment.from_wav(temp_wav_path)
|
| 157 |
+
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as temp_mp3:
|
| 158 |
+
audio_segment.export(temp_mp3.name, format="mp3")
|
| 159 |
+
temp_mp3_path = temp_mp3.name
|
| 160 |
+
|
| 161 |
+
# Read the MP3 data
|
| 162 |
+
with open(temp_mp3_path, 'rb') as mp3_file:
|
| 163 |
+
mp3_data = mp3_file.read()
|
| 164 |
+
|
| 165 |
+
# Clean up temporary files
|
| 166 |
+
os.unlink(temp_wav_path)
|
| 167 |
+
os.unlink(temp_mp3_path)
|
| 168 |
+
|
| 169 |
+
# Yield MP3 data instead of numpy array
|
| 170 |
+
yield (sr, mp3_data)
|
| 171 |
+
|
| 172 |
t1 = time.time()
|
| 173 |
+
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds. MP3 conversion completed.")
|
| 174 |
+
|
| 175 |
|
| 176 |
EXAMPLES = [
|
| 177 |
["https://huggingface.co/blog/inference-providers-cohere", None, "How does using this compare with other inference solutions?"],
|
|
|
|
| 192 |
outputs=[
|
| 193 |
gr.Audio(
|
| 194 |
label="Listen to your podcast! 🔊",
|
| 195 |
+
format="mp3",
|
| 196 |
streaming=True,
|
| 197 |
),
|
| 198 |
],
|
requirements.txt
CHANGED
|
@@ -4,4 +4,6 @@ transformers
|
|
| 4 |
PyMuPDF
|
| 5 |
soundfile
|
| 6 |
numpy
|
| 7 |
-
requests
|
|
|
|
|
|
|
|
|
| 4 |
PyMuPDF
|
| 5 |
soundfile
|
| 6 |
numpy
|
| 7 |
+
requests
|
| 8 |
+
pydub
|
| 9 |
+
ffmpeg-python
|
rss.xml
CHANGED
|
@@ -26,8 +26,8 @@
|
|
| 26 |
|
| 27 |
<!-- Example Episode -->
|
| 28 |
<item>
|
| 29 |
-
<title>
|
| 30 |
-
<description>Today’s
|
| 31 |
<pubDate>Tue, 13 May 2025 10:00:00 +0000</pubDate>
|
| 32 |
<enclosure url="https://yourpodcastwebsite.com/audio/episode1.mp3" length="12345678" type="audio/mpeg"/>
|
| 33 |
<guid>https://yourpodcastwebsite.com/audio/episode1.mp3</guid>
|
|
|
|
| 26 |
|
| 27 |
<!-- Example Episode -->
|
| 28 |
<item>
|
| 29 |
+
<title>Step 1x3D – From Scrap Models to Masterpieces</title>
|
| 30 |
+
<description>Today’s episode dives into Step 1x3D, a new open-source method that cleans noisy 3D data, bridges 2D–3D generation, and rivals top proprietary tools. From mesh repair to texture-perfect diffusion, it’s a major leap for 3D AI.</description>
|
| 31 |
<pubDate>Tue, 13 May 2025 10:00:00 +0000</pubDate>
|
| 32 |
<enclosure url="https://yourpodcastwebsite.com/audio/episode1.mp3" length="12345678" type="audio/mpeg"/>
|
| 33 |
<guid>https://yourpodcastwebsite.com/audio/episode1.mp3</guid>
|
update-rss.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import xml.etree.ElementTree as ET
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
import os
|
| 4 |
+
from app import generate_headline_and_description
|
| 5 |
+
|
| 6 |
+
def get_next_episode_number(podcast_dir="podcasts"):
|
| 7 |
+
files = [f for f in os.listdir(podcast_dir) if f.endswith(".wav")]
|
| 8 |
+
return len(files) + 1
|
| 9 |
+
|
| 10 |
+
def update_rss(subject, audio_url, audio_length, rss_path="rss.xml"):
|
| 11 |
+
# Generate headline and description automatically
|
| 12 |
+
title, description = generate_headline_and_description(subject)
|
| 13 |
+
|
| 14 |
+
tree = ET.parse(rss_path)
|
| 15 |
+
root = tree.getroot()
|
| 16 |
+
channel = root.find("channel")
|
| 17 |
+
|
| 18 |
+
# Update lastBuildDate
|
| 19 |
+
last_build_date = channel.find("lastBuildDate")
|
| 20 |
+
now_rfc2822 = datetime.utcnow().strftime("%a, %d %b %Y %H:%M:%S +0000")
|
| 21 |
+
if last_build_date is not None:
|
| 22 |
+
last_build_date.text = now_rfc2822
|
| 23 |
+
|
| 24 |
+
# Create new item
|
| 25 |
+
item = ET.Element("item")
|
| 26 |
+
ET.SubElement(item, "title").text = title
|
| 27 |
+
ET.SubElement(item, "description").text = description
|
| 28 |
+
ET.SubElement(item, "pubDate").text = now_rfc2822
|
| 29 |
+
ET.SubElement(item, "enclosure", url=audio_url, length=str(audio_length), type="audio/mpeg")
|
| 30 |
+
ET.SubElement(item, "guid").text = audio_url
|
| 31 |
+
ET.SubElement(item, "itunes:explicit").text = "false"
|
| 32 |
+
|
| 33 |
+
# Insert new item after lastBuildDate (i.e., as the first item)
|
| 34 |
+
# Find the first <item> and insert before it, or append if none exist
|
| 35 |
+
items = channel.findall("item")
|
| 36 |
+
if items:
|
| 37 |
+
channel.insert(list(channel).index(items[0]), item)
|
| 38 |
+
else:
|
| 39 |
+
channel.append(item)
|
| 40 |
+
|
| 41 |
+
# Write back to file
|
| 42 |
+
tree.write(rss_path, encoding="utf-8", xml_declaration=True)
|