Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Dockerfile +27 -0
- app2.py +43 -0
- requirements.txt +7 -0
Dockerfile
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9-slim
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
RUN useradd -m -u 1000 user
|
| 5 |
+
USER user
|
| 6 |
+
ENV HOME=/home/user \
|
| 7 |
+
PATH=/home/user/.local/bin:$PATH
|
| 8 |
+
WORKDIR $HOME/app
|
| 9 |
+
|
| 10 |
+
COPY --chown=user . $HOME/app
|
| 11 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
| 12 |
+
|
| 13 |
+
USER root
|
| 14 |
+
RUN rm /var/lib/apt/lists/* -vf
|
| 15 |
+
RUN apt-get clean
|
| 16 |
+
RUN apt-get update
|
| 17 |
+
RUN apt-get upgrade
|
| 18 |
+
RUN apt-get install -y wget zip unzip uvicorn espeak-ng
|
| 19 |
+
USER user
|
| 20 |
+
COPY . .
|
| 21 |
+
USER root
|
| 22 |
+
RUN chmod 777 ~/app/*
|
| 23 |
+
USER user
|
| 24 |
+
|
| 25 |
+
RUN pip3 install -r requirements.txt
|
| 26 |
+
|
| 27 |
+
CMD ["python", "app.py"]
|
app2.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from transformers import BlipForQuestionAnswering
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
logging.set_verbosity_error()
|
| 6 |
+
|
| 7 |
+
from transformers import AutoProcessor
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
od_pipe = pipeline("object-detection", "facebook/detr-resnet-50")
|
| 12 |
+
tts_pipe = pipeline("text-to-speech",
|
| 13 |
+
model="kakao-enterprise/vits-ljs")
|
| 14 |
+
|
| 15 |
+
model = BlipForQuestionAnswering.from_pretrained(
|
| 16 |
+
"Salesforce/blip-vqa-base")
|
| 17 |
+
|
| 18 |
+
processor = AutoProcessor.from_pretrained(
|
| 19 |
+
"Salesforce/blip-vqa-base")
|
| 20 |
+
|
| 21 |
+
def get_pipeline_prediction(pil_image, question):
|
| 22 |
+
|
| 23 |
+
inputs = processor(pil_image, question, return_tensors="pt")
|
| 24 |
+
|
| 25 |
+
out = model.generate(**inputs)
|
| 26 |
+
|
| 27 |
+
text = processor.decode(out[0], skip_special_tokens=True)
|
| 28 |
+
|
| 29 |
+
narrated_text = tts_pipe(text)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
return (narrated_text["sampling_rate"], narrated_text["audio"][0] )
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
demo = gr.Interface(
|
| 36 |
+
fn=get_pipeline_prediction,
|
| 37 |
+
inputs=[gr.Image(label="Input image",
|
| 38 |
+
type="pil"), gr.Textbox(label="Ask your question")],
|
| 39 |
+
outputs=gr.Audio(label="Narration", type="numpy", autoplay=True)
|
| 40 |
+
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python-headless<4.3
|
| 2 |
+
gradio
|
| 3 |
+
transformers
|
| 4 |
+
phonemizer
|
| 5 |
+
py-espeak-ng
|
| 6 |
+
inflect
|
| 7 |
+
timm
|