Spaces:
Runtime error
Runtime error
- cacm.raw +0 -0
- common_words +429 -0
- hw2_part3_web.py +515 -0
cacm.raw
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
common_words
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
a
|
| 2 |
+
about
|
| 3 |
+
above
|
| 4 |
+
accordingly
|
| 5 |
+
across
|
| 6 |
+
after
|
| 7 |
+
afterwards
|
| 8 |
+
again
|
| 9 |
+
against
|
| 10 |
+
all
|
| 11 |
+
almost
|
| 12 |
+
alone
|
| 13 |
+
along
|
| 14 |
+
already
|
| 15 |
+
also
|
| 16 |
+
although
|
| 17 |
+
always
|
| 18 |
+
am
|
| 19 |
+
among
|
| 20 |
+
amongst
|
| 21 |
+
an
|
| 22 |
+
and
|
| 23 |
+
another
|
| 24 |
+
any
|
| 25 |
+
anybody
|
| 26 |
+
anyhow
|
| 27 |
+
anyone
|
| 28 |
+
anything
|
| 29 |
+
anywhere
|
| 30 |
+
apart
|
| 31 |
+
are
|
| 32 |
+
around
|
| 33 |
+
as
|
| 34 |
+
aside
|
| 35 |
+
at
|
| 36 |
+
away
|
| 37 |
+
awfully
|
| 38 |
+
b
|
| 39 |
+
be
|
| 40 |
+
became
|
| 41 |
+
because
|
| 42 |
+
become
|
| 43 |
+
becomes
|
| 44 |
+
becoming
|
| 45 |
+
been
|
| 46 |
+
before
|
| 47 |
+
beforehand
|
| 48 |
+
behind
|
| 49 |
+
being
|
| 50 |
+
below
|
| 51 |
+
beside
|
| 52 |
+
besides
|
| 53 |
+
best
|
| 54 |
+
better
|
| 55 |
+
between
|
| 56 |
+
beyond
|
| 57 |
+
both
|
| 58 |
+
brief
|
| 59 |
+
but
|
| 60 |
+
by
|
| 61 |
+
c
|
| 62 |
+
can
|
| 63 |
+
cannot
|
| 64 |
+
cant
|
| 65 |
+
certain
|
| 66 |
+
co
|
| 67 |
+
consequently
|
| 68 |
+
could
|
| 69 |
+
d
|
| 70 |
+
did
|
| 71 |
+
do
|
| 72 |
+
does
|
| 73 |
+
doing
|
| 74 |
+
done
|
| 75 |
+
down
|
| 76 |
+
downwards
|
| 77 |
+
during
|
| 78 |
+
e
|
| 79 |
+
each
|
| 80 |
+
eg
|
| 81 |
+
eight
|
| 82 |
+
either
|
| 83 |
+
else
|
| 84 |
+
elsewhere
|
| 85 |
+
enough
|
| 86 |
+
et
|
| 87 |
+
etc
|
| 88 |
+
even
|
| 89 |
+
ever
|
| 90 |
+
every
|
| 91 |
+
everybody
|
| 92 |
+
everyone
|
| 93 |
+
everything
|
| 94 |
+
everywhere
|
| 95 |
+
ex
|
| 96 |
+
except
|
| 97 |
+
f
|
| 98 |
+
far
|
| 99 |
+
few
|
| 100 |
+
fifth
|
| 101 |
+
first
|
| 102 |
+
five
|
| 103 |
+
for
|
| 104 |
+
former
|
| 105 |
+
formerly
|
| 106 |
+
forth
|
| 107 |
+
four
|
| 108 |
+
from
|
| 109 |
+
further
|
| 110 |
+
furthermore
|
| 111 |
+
g
|
| 112 |
+
get
|
| 113 |
+
gets
|
| 114 |
+
go
|
| 115 |
+
gone
|
| 116 |
+
got
|
| 117 |
+
h
|
| 118 |
+
had
|
| 119 |
+
hardly
|
| 120 |
+
has
|
| 121 |
+
have
|
| 122 |
+
having
|
| 123 |
+
he
|
| 124 |
+
hence
|
| 125 |
+
her
|
| 126 |
+
here
|
| 127 |
+
hereafter
|
| 128 |
+
hereby
|
| 129 |
+
herein
|
| 130 |
+
hereupon
|
| 131 |
+
hers
|
| 132 |
+
herself
|
| 133 |
+
him
|
| 134 |
+
himself
|
| 135 |
+
his
|
| 136 |
+
hither
|
| 137 |
+
how
|
| 138 |
+
howbeit
|
| 139 |
+
however
|
| 140 |
+
i
|
| 141 |
+
ie
|
| 142 |
+
if
|
| 143 |
+
immediate
|
| 144 |
+
in
|
| 145 |
+
inasmuch
|
| 146 |
+
inc
|
| 147 |
+
indeed
|
| 148 |
+
inner
|
| 149 |
+
insofar
|
| 150 |
+
instead
|
| 151 |
+
into
|
| 152 |
+
inward
|
| 153 |
+
is
|
| 154 |
+
it
|
| 155 |
+
its
|
| 156 |
+
itself
|
| 157 |
+
j
|
| 158 |
+
just
|
| 159 |
+
k
|
| 160 |
+
keep
|
| 161 |
+
kept
|
| 162 |
+
l
|
| 163 |
+
last
|
| 164 |
+
latter
|
| 165 |
+
latterly
|
| 166 |
+
least
|
| 167 |
+
less
|
| 168 |
+
lest
|
| 169 |
+
like
|
| 170 |
+
little
|
| 171 |
+
ltd
|
| 172 |
+
m
|
| 173 |
+
many
|
| 174 |
+
may
|
| 175 |
+
me
|
| 176 |
+
meanwhile
|
| 177 |
+
might
|
| 178 |
+
more
|
| 179 |
+
moreover
|
| 180 |
+
most
|
| 181 |
+
mostly
|
| 182 |
+
much
|
| 183 |
+
must
|
| 184 |
+
my
|
| 185 |
+
myself
|
| 186 |
+
n
|
| 187 |
+
namely
|
| 188 |
+
near
|
| 189 |
+
neither
|
| 190 |
+
never
|
| 191 |
+
nevertheless
|
| 192 |
+
new
|
| 193 |
+
next
|
| 194 |
+
nine
|
| 195 |
+
no
|
| 196 |
+
nobody
|
| 197 |
+
none
|
| 198 |
+
noone
|
| 199 |
+
nor
|
| 200 |
+
not
|
| 201 |
+
nothing
|
| 202 |
+
novel
|
| 203 |
+
now
|
| 204 |
+
nowhere
|
| 205 |
+
o
|
| 206 |
+
of
|
| 207 |
+
off
|
| 208 |
+
often
|
| 209 |
+
oh
|
| 210 |
+
old
|
| 211 |
+
on
|
| 212 |
+
once
|
| 213 |
+
one
|
| 214 |
+
ones
|
| 215 |
+
only
|
| 216 |
+
onto
|
| 217 |
+
or
|
| 218 |
+
other
|
| 219 |
+
others
|
| 220 |
+
otherwise
|
| 221 |
+
ought
|
| 222 |
+
our
|
| 223 |
+
ours
|
| 224 |
+
ourselves
|
| 225 |
+
out
|
| 226 |
+
outside
|
| 227 |
+
over
|
| 228 |
+
overall
|
| 229 |
+
own
|
| 230 |
+
p
|
| 231 |
+
particular
|
| 232 |
+
particularly
|
| 233 |
+
per
|
| 234 |
+
perhaps
|
| 235 |
+
please
|
| 236 |
+
plus
|
| 237 |
+
probably
|
| 238 |
+
q
|
| 239 |
+
que
|
| 240 |
+
quite
|
| 241 |
+
r
|
| 242 |
+
rather
|
| 243 |
+
really
|
| 244 |
+
relatively
|
| 245 |
+
respectively
|
| 246 |
+
right
|
| 247 |
+
s
|
| 248 |
+
said
|
| 249 |
+
same
|
| 250 |
+
second
|
| 251 |
+
secondly
|
| 252 |
+
see
|
| 253 |
+
seem
|
| 254 |
+
seemed
|
| 255 |
+
seeming
|
| 256 |
+
seems
|
| 257 |
+
self
|
| 258 |
+
selves
|
| 259 |
+
sensible
|
| 260 |
+
serious
|
| 261 |
+
seven
|
| 262 |
+
several
|
| 263 |
+
shall
|
| 264 |
+
she
|
| 265 |
+
should
|
| 266 |
+
since
|
| 267 |
+
six
|
| 268 |
+
so
|
| 269 |
+
some
|
| 270 |
+
somebody
|
| 271 |
+
somehow
|
| 272 |
+
someone
|
| 273 |
+
something
|
| 274 |
+
sometime
|
| 275 |
+
sometimes
|
| 276 |
+
somewhat
|
| 277 |
+
somewhere
|
| 278 |
+
still
|
| 279 |
+
sub
|
| 280 |
+
such
|
| 281 |
+
sup
|
| 282 |
+
t
|
| 283 |
+
than
|
| 284 |
+
that
|
| 285 |
+
the
|
| 286 |
+
their
|
| 287 |
+
theirs
|
| 288 |
+
them
|
| 289 |
+
themselves
|
| 290 |
+
then
|
| 291 |
+
thence
|
| 292 |
+
there
|
| 293 |
+
thereafter
|
| 294 |
+
thereby
|
| 295 |
+
therefore
|
| 296 |
+
therein
|
| 297 |
+
thereupon
|
| 298 |
+
these
|
| 299 |
+
they
|
| 300 |
+
third
|
| 301 |
+
this
|
| 302 |
+
thorough
|
| 303 |
+
thoroughly
|
| 304 |
+
those
|
| 305 |
+
though
|
| 306 |
+
three
|
| 307 |
+
through
|
| 308 |
+
throughout
|
| 309 |
+
thru
|
| 310 |
+
thus
|
| 311 |
+
to
|
| 312 |
+
together
|
| 313 |
+
too
|
| 314 |
+
toward
|
| 315 |
+
towards
|
| 316 |
+
twice
|
| 317 |
+
two
|
| 318 |
+
u
|
| 319 |
+
under
|
| 320 |
+
until
|
| 321 |
+
unto
|
| 322 |
+
up
|
| 323 |
+
upon
|
| 324 |
+
us
|
| 325 |
+
v
|
| 326 |
+
various
|
| 327 |
+
very
|
| 328 |
+
via
|
| 329 |
+
vs
|
| 330 |
+
viz
|
| 331 |
+
w
|
| 332 |
+
was
|
| 333 |
+
we
|
| 334 |
+
well
|
| 335 |
+
went
|
| 336 |
+
were
|
| 337 |
+
what
|
| 338 |
+
whatever
|
| 339 |
+
when
|
| 340 |
+
whence
|
| 341 |
+
whenever
|
| 342 |
+
where
|
| 343 |
+
whereafter
|
| 344 |
+
whereas
|
| 345 |
+
whereby
|
| 346 |
+
wherein
|
| 347 |
+
whereupon
|
| 348 |
+
wherever
|
| 349 |
+
whether
|
| 350 |
+
which
|
| 351 |
+
while
|
| 352 |
+
whither
|
| 353 |
+
who
|
| 354 |
+
whoever
|
| 355 |
+
whole
|
| 356 |
+
whom
|
| 357 |
+
whose
|
| 358 |
+
why
|
| 359 |
+
will
|
| 360 |
+
with
|
| 361 |
+
within
|
| 362 |
+
without
|
| 363 |
+
would
|
| 364 |
+
x
|
| 365 |
+
y
|
| 366 |
+
yet
|
| 367 |
+
you
|
| 368 |
+
your
|
| 369 |
+
yours
|
| 370 |
+
yourself
|
| 371 |
+
yourselves
|
| 372 |
+
z
|
| 373 |
+
zero
|
| 374 |
+
/*
|
| 375 |
+
manual
|
| 376 |
+
unix
|
| 377 |
+
programmer's
|
| 378 |
+
file
|
| 379 |
+
files
|
| 380 |
+
used
|
| 381 |
+
name
|
| 382 |
+
specified
|
| 383 |
+
value
|
| 384 |
+
given
|
| 385 |
+
return
|
| 386 |
+
use
|
| 387 |
+
following
|
| 388 |
+
current
|
| 389 |
+
using
|
| 390 |
+
normally
|
| 391 |
+
returns
|
| 392 |
+
returned
|
| 393 |
+
causes
|
| 394 |
+
described
|
| 395 |
+
contains
|
| 396 |
+
example
|
| 397 |
+
possible
|
| 398 |
+
useful
|
| 399 |
+
available
|
| 400 |
+
associated
|
| 401 |
+
would
|
| 402 |
+
cause
|
| 403 |
+
provides
|
| 404 |
+
taken
|
| 405 |
+
unless
|
| 406 |
+
sent
|
| 407 |
+
followed
|
| 408 |
+
indicates
|
| 409 |
+
currently
|
| 410 |
+
necessary
|
| 411 |
+
specify
|
| 412 |
+
contain
|
| 413 |
+
indicate
|
| 414 |
+
appear
|
| 415 |
+
different
|
| 416 |
+
indicated
|
| 417 |
+
containing
|
| 418 |
+
gives
|
| 419 |
+
placed
|
| 420 |
+
uses
|
| 421 |
+
appropriate
|
| 422 |
+
automatically
|
| 423 |
+
ignored
|
| 424 |
+
changes
|
| 425 |
+
way
|
| 426 |
+
usually
|
| 427 |
+
allows
|
| 428 |
+
corresponding
|
| 429 |
+
specifying
|
hw2_part3_web.py
ADDED
|
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
import re
|
| 3 |
+
from collections import Counter, defaultdict
|
| 4 |
+
from typing import Dict, List, NamedTuple
|
| 5 |
+
import argparse
|
| 6 |
+
import sys
|
| 7 |
+
import time
|
| 8 |
+
import threading
|
| 9 |
+
import itertools
|
| 10 |
+
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import numpy as np
|
| 13 |
+
from numpy.linalg import norm
|
| 14 |
+
import nltk
|
| 15 |
+
from nltk.stem.snowball import SnowballStemmer
|
| 16 |
+
from nltk.tokenize import word_tokenize
|
| 17 |
+
# nltk.download('punkt_tab')
|
| 18 |
+
|
| 19 |
+
def spinner(stop_event):
|
| 20 |
+
spinner_chars = itertools.cycle(['-', '\\', '|', '/'])
|
| 21 |
+
sys.stdout.write(f'{next(spinner_chars)}')
|
| 22 |
+
sys.stdout.flush()
|
| 23 |
+
time.sleep(0.1)
|
| 24 |
+
while not stop_event.is_set():
|
| 25 |
+
sys.stdout.write(f'\b{next(spinner_chars)}')
|
| 26 |
+
sys.stdout.flush()
|
| 27 |
+
time.sleep(0.1)
|
| 28 |
+
print(f'\b \n')
|
| 29 |
+
|
| 30 |
+
# Create a threading event to stop the spinner
|
| 31 |
+
stop_event = threading.Event()
|
| 32 |
+
|
| 33 |
+
### File IO and processing
|
| 34 |
+
|
| 35 |
+
class Document(NamedTuple):
|
| 36 |
+
doc_id: int
|
| 37 |
+
author: List[str]
|
| 38 |
+
title: List[str]
|
| 39 |
+
keyword: List[str]
|
| 40 |
+
abstract: List[str]
|
| 41 |
+
|
| 42 |
+
def sections(self):
|
| 43 |
+
return [self.author, self.title, self.keyword, self.abstract]
|
| 44 |
+
|
| 45 |
+
def __repr__(self):
|
| 46 |
+
return (f"doc_id: {self.doc_id}\n" +
|
| 47 |
+
f" author: {self.author}\n" +
|
| 48 |
+
f" title: {self.title}\n" +
|
| 49 |
+
f" keyword: {self.keyword}\n" +
|
| 50 |
+
f" abstract: {self.abstract}")
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def read_stopwords(file):
|
| 54 |
+
with open(file) as f:
|
| 55 |
+
return set([x.strip() for x in f.readlines()])
|
| 56 |
+
|
| 57 |
+
stopwords = read_stopwords('common_words')
|
| 58 |
+
|
| 59 |
+
stemmer = SnowballStemmer('english')
|
| 60 |
+
|
| 61 |
+
def read_rels(file):
|
| 62 |
+
'''
|
| 63 |
+
Reads the file of related documents and returns a dictionary of query id -> list of related documents
|
| 64 |
+
'''
|
| 65 |
+
rels = {}
|
| 66 |
+
with open(file) as f:
|
| 67 |
+
for line in f:
|
| 68 |
+
qid, rel = line.strip().split()
|
| 69 |
+
qid = int(qid)
|
| 70 |
+
rel = int(rel)
|
| 71 |
+
if qid not in rels:
|
| 72 |
+
rels[qid] = []
|
| 73 |
+
rels[qid].append(rel)
|
| 74 |
+
return rels
|
| 75 |
+
|
| 76 |
+
def read_docs(file):
|
| 77 |
+
'''
|
| 78 |
+
Reads the corpus into a list of Documents
|
| 79 |
+
'''
|
| 80 |
+
docs = [defaultdict(list)] # empty 0 index
|
| 81 |
+
category = ''
|
| 82 |
+
with open(file) as f:
|
| 83 |
+
i = 0
|
| 84 |
+
for line in f:
|
| 85 |
+
line = line.strip()
|
| 86 |
+
if line.startswith('.I'):
|
| 87 |
+
i = int(line[3:])
|
| 88 |
+
docs.append(defaultdict(list))
|
| 89 |
+
elif re.match(r'\.\w', line):
|
| 90 |
+
category = line[1]
|
| 91 |
+
elif line != '':
|
| 92 |
+
for word in word_tokenize(line):
|
| 93 |
+
docs[i][category].append(word.lower())
|
| 94 |
+
|
| 95 |
+
return [Document(i + 1, d['A'], d['T'], d['K'], d['W'])
|
| 96 |
+
for i, d in enumerate(docs[1:])]
|
| 97 |
+
|
| 98 |
+
def read_docs_for_presentation(file):
|
| 99 |
+
docs = [defaultdict(str)] # empty 0 index
|
| 100 |
+
category = ''
|
| 101 |
+
with open(file) as f:
|
| 102 |
+
i = 0
|
| 103 |
+
for line in f:
|
| 104 |
+
line = line.strip()
|
| 105 |
+
if line.startswith('.I'):
|
| 106 |
+
i = int(line[3:])
|
| 107 |
+
docs.append(defaultdict(str))
|
| 108 |
+
elif re.match(r'\.\w', line):
|
| 109 |
+
category = line[1]
|
| 110 |
+
elif line != '':
|
| 111 |
+
if docs[i][category] == '':
|
| 112 |
+
docs[i][category] = line
|
| 113 |
+
else:
|
| 114 |
+
if docs[i][category][-1] == '.':
|
| 115 |
+
docs[i][category] = f'{docs[i][category]} {line}'
|
| 116 |
+
else:
|
| 117 |
+
docs[i][category] = f'{docs[i][category]}. {line}'
|
| 118 |
+
|
| 119 |
+
return [Document(i + 1, d['A'], d['T'], d['K'], d['W'])
|
| 120 |
+
for i, d in enumerate(docs[1:])]
|
| 121 |
+
|
| 122 |
+
def stem_doc(doc: Document):
|
| 123 |
+
return Document(doc.doc_id, *[[stemmer.stem(word) for word in sec]
|
| 124 |
+
for sec in doc.sections()])
|
| 125 |
+
|
| 126 |
+
def stem_docs(docs: List[Document]):
|
| 127 |
+
return [stem_doc(doc) for doc in docs]
|
| 128 |
+
|
| 129 |
+
def remove_stopwords_doc(doc: Document):
|
| 130 |
+
return Document(doc.doc_id, *[[word for word in sec if word not in stopwords]
|
| 131 |
+
for sec in doc.sections()])
|
| 132 |
+
|
| 133 |
+
def remove_stopwords(docs: List[Document]):
|
| 134 |
+
return [remove_stopwords_doc(doc) for doc in docs]
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
### Term-Document Matrix
|
| 139 |
+
|
| 140 |
+
class TermWeights(NamedTuple):
|
| 141 |
+
author: float
|
| 142 |
+
title: float
|
| 143 |
+
keyword: float
|
| 144 |
+
abstract: float
|
| 145 |
+
|
| 146 |
+
def compute_doc_freqs(docs: List[Document]):
|
| 147 |
+
'''
|
| 148 |
+
Computes document frequency, i.e. how many documents contain a specific word
|
| 149 |
+
'''
|
| 150 |
+
freq = Counter()
|
| 151 |
+
for doc in docs:
|
| 152 |
+
words = set()
|
| 153 |
+
for sec in doc.sections():
|
| 154 |
+
for word in sec:
|
| 155 |
+
words.add(word)
|
| 156 |
+
for word in words:
|
| 157 |
+
freq[word] += 1
|
| 158 |
+
return freq
|
| 159 |
+
|
| 160 |
+
def compute_tf(doc: Document, doc_freqs: Dict[str, int], weights: list):
|
| 161 |
+
vec = defaultdict(float)
|
| 162 |
+
for word in doc.author:
|
| 163 |
+
vec[word] += weights.author
|
| 164 |
+
for word in doc.keyword:
|
| 165 |
+
vec[word] += weights.keyword
|
| 166 |
+
for word in doc.title:
|
| 167 |
+
vec[word] += weights.title
|
| 168 |
+
for word in doc.abstract:
|
| 169 |
+
vec[word] += weights.abstract
|
| 170 |
+
return dict(vec) # convert back to a regular dict
|
| 171 |
+
|
| 172 |
+
def compute_tfidf(doc, doc_freqs, weights):
|
| 173 |
+
tfidf = defaultdict(float)
|
| 174 |
+
tf = compute_tf(doc, doc_freqs, weights)
|
| 175 |
+
N = 3204
|
| 176 |
+
for word in tf:
|
| 177 |
+
idf = np.log((1+N) / (1+doc_freqs[word]))
|
| 178 |
+
tfidf[word] = tf[word] * idf
|
| 179 |
+
return dict(tfidf) # convert back to a regular dict
|
| 180 |
+
|
| 181 |
+
def compute_boolean(doc, doc_freqs, weights):
|
| 182 |
+
vec = defaultdict(float)
|
| 183 |
+
for word in doc.author:
|
| 184 |
+
vec[word] = weights.author
|
| 185 |
+
for word in doc.keyword:
|
| 186 |
+
vec[word] = weights.keyword
|
| 187 |
+
for word in doc.title:
|
| 188 |
+
vec[word] = weights.title
|
| 189 |
+
for word in doc.abstract:
|
| 190 |
+
vec[word] = weights.abstract
|
| 191 |
+
return dict(vec) # convert back to a regular dict
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
### Vector Similarity
|
| 196 |
+
|
| 197 |
+
def dictdot(x: Dict[str, float], y: Dict[str, float]):
|
| 198 |
+
'''
|
| 199 |
+
Computes the dot product of vectors x and y, represented as sparse dictionaries.
|
| 200 |
+
'''
|
| 201 |
+
keys = list(x.keys()) if len(x) < len(y) else list(y.keys())
|
| 202 |
+
return sum(x.get(key, 0) * y.get(key, 0) for key in keys)
|
| 203 |
+
|
| 204 |
+
def cosine_sim_dict(x, y):
|
| 205 |
+
'''
|
| 206 |
+
Computes the cosine similarity between two sparse term vectors represented as dictionaries.
|
| 207 |
+
'''
|
| 208 |
+
num = dictdot(x, y)
|
| 209 |
+
if num == 0:
|
| 210 |
+
return 0
|
| 211 |
+
return num / (norm(list(x.values())) * norm(list(y.values())))
|
| 212 |
+
|
| 213 |
+
def cosine_sim(x, y):
|
| 214 |
+
if isinstance(x, dict):
|
| 215 |
+
return cosine_sim_dict(x, y)
|
| 216 |
+
return np.dot(x, y) / (np.linalg.norm(x) * np.linalg.norm(y))
|
| 217 |
+
|
| 218 |
+
def dice_sim(x, y):
|
| 219 |
+
raise NotImplementedError
|
| 220 |
+
num = 2 * dictdot(x, y)
|
| 221 |
+
if num == 0:
|
| 222 |
+
return 0
|
| 223 |
+
denom = sum(list(x.values())) + sum(list(y.values()))
|
| 224 |
+
ret = num / denom if denom != 0 else 0
|
| 225 |
+
# if ret > 1 or ret < 0:
|
| 226 |
+
# breakpoint()
|
| 227 |
+
return ret
|
| 228 |
+
|
| 229 |
+
def jaccard_sim(x, y):
|
| 230 |
+
raise NotImplementedError
|
| 231 |
+
num = dictdot(x, y)
|
| 232 |
+
if num == 0:
|
| 233 |
+
return 0
|
| 234 |
+
# denom = norm(list(x.values())) ** 2 + norm(list(y.values())) ** 2 - num
|
| 235 |
+
denom = sum(list(x.values())) + sum(list(y.values())) - num
|
| 236 |
+
ret = num / denom if denom != 0 else 0
|
| 237 |
+
# if ret > 1 or ret < 0:
|
| 238 |
+
# breakpoint()
|
| 239 |
+
return ret
|
| 240 |
+
|
| 241 |
+
def overlap_sim(x, y):
|
| 242 |
+
raise NotImplementedError
|
| 243 |
+
num = dictdot(x, y)
|
| 244 |
+
if num == 0:
|
| 245 |
+
return 0
|
| 246 |
+
# denom = min(norm(list(x.values())) ** 2, norm(list(y.values())) ** 2)
|
| 247 |
+
denom = min(sum(list(x.values())), sum(list(y.values())))
|
| 248 |
+
ret = num / denom if denom != 0 else 0
|
| 249 |
+
# if ret > 1 or ret < 0:
|
| 250 |
+
# breakpoint()
|
| 251 |
+
return ret
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
### Precision/Recall
|
| 255 |
+
|
| 256 |
+
def interpolate(x1, y1, x2, y2, x):
|
| 257 |
+
m = (y2 - y1) / (x2 - x1)
|
| 258 |
+
b = y1 - m * x1
|
| 259 |
+
return m * x + b
|
| 260 |
+
|
| 261 |
+
def precision_at(recall: float, results: List[int], relevant: List[int]) -> float:
|
| 262 |
+
'''
|
| 263 |
+
This function should compute the precision at the specified recall level.
|
| 264 |
+
If the recall level is in between two points, you should do a linear interpolation
|
| 265 |
+
between the two closest points. For example, if you have 4 results
|
| 266 |
+
(recall 0.25, 0.5, 0.75, and 1.0), and you need to compute recall @ 0.6, then do something like
|
| 267 |
+
|
| 268 |
+
interpolate(0.5, prec @ 0.5, 0.75, prec @ 0.75, 0.6)
|
| 269 |
+
|
| 270 |
+
Note that there is implicitly a point (recall=0, precision=1).
|
| 271 |
+
|
| 272 |
+
`results` is a sorted list of document ids
|
| 273 |
+
`relevant` is a list of relevant documents
|
| 274 |
+
'''
|
| 275 |
+
assert recall >= 0 and recall <= 1, f'Invalid recall: {recall}'
|
| 276 |
+
recalls = [0]
|
| 277 |
+
precisions = [1]
|
| 278 |
+
recalls += [(i+1) / len(relevant) for i in range(len(relevant))]
|
| 279 |
+
ranks = sorted([results.index(rel)+1 for rel in relevant])
|
| 280 |
+
precisions += [(i+1) / rk for i, rk in enumerate(ranks)]
|
| 281 |
+
|
| 282 |
+
idx = 0
|
| 283 |
+
for i, rec in enumerate(recalls):
|
| 284 |
+
if recall > rec:
|
| 285 |
+
idx = i
|
| 286 |
+
r1 = recalls[idx]
|
| 287 |
+
r2 = recalls[idx+1]
|
| 288 |
+
|
| 289 |
+
val = interpolate(r1, precisions[idx], r2, precisions[idx+1], recall)
|
| 290 |
+
return val
|
| 291 |
+
|
| 292 |
+
def mean_precision1(results, relevant):
|
| 293 |
+
return (precision_at(0.25, results, relevant) +
|
| 294 |
+
precision_at(0.5, results, relevant) +
|
| 295 |
+
precision_at(0.75, results, relevant)) / 3
|
| 296 |
+
|
| 297 |
+
def mean_precision2(results, relevant):
|
| 298 |
+
return sum([precision_at((i+1)/10, results, relevant) for i in range(10)]) / 10
|
| 299 |
+
|
| 300 |
+
def norm_recall(results, relevant):
|
| 301 |
+
N = len(results)
|
| 302 |
+
num_rel = len(relevant)
|
| 303 |
+
ranks = [results.index(rel) + 1 for rel in relevant]
|
| 304 |
+
return 1 - (sum([ranks[i] for i in range(num_rel)]) - sum([i+1 for i in range(num_rel)])) / num_rel / (N - num_rel)
|
| 305 |
+
|
| 306 |
+
def norm_precision(results, relevant):
|
| 307 |
+
N = len(results)
|
| 308 |
+
num_rel = len(relevant)
|
| 309 |
+
ranks = [results.index(rel) + 1 for rel in relevant]
|
| 310 |
+
denum = N * np.log(N) - (N - num_rel) * np.log(N - num_rel) - num_rel * np.log(num_rel)
|
| 311 |
+
return 1 - (sum([np.log(ranks[i]) for i in range(num_rel)]) - sum([np.log(i+1) for i in range(num_rel)])) / denum
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
### Extensions
|
| 315 |
+
|
| 316 |
+
# TODO: put any extensions here
|
| 317 |
+
|
| 318 |
+
def to_full_matrix(doc_vectors):
|
| 319 |
+
'''
|
| 320 |
+
Converts a list of sparse term vectors into a full term-document matrix.
|
| 321 |
+
'''
|
| 322 |
+
# a set of words in all documents
|
| 323 |
+
words = set()
|
| 324 |
+
for doc_vec in doc_vectors:
|
| 325 |
+
words.update(doc_vec.keys())
|
| 326 |
+
words = list(words)
|
| 327 |
+
|
| 328 |
+
matrix = np.zeros((len(doc_vectors), len(words)))
|
| 329 |
+
for i, doc_vec in enumerate(doc_vectors):
|
| 330 |
+
for word, val in doc_vec.items():
|
| 331 |
+
matrix[i, words.index(word)] = val
|
| 332 |
+
return matrix, words
|
| 333 |
+
|
| 334 |
+
def sparse_svd(doc_vectors, rank):
|
| 335 |
+
doc_matrix, words = to_full_matrix(doc_vectors)
|
| 336 |
+
_, _, Vt = np.linalg.svd(doc_matrix)
|
| 337 |
+
Vt_k = Vt[:rank, :]
|
| 338 |
+
|
| 339 |
+
doc_matrix = doc_matrix @ Vt_k.T
|
| 340 |
+
|
| 341 |
+
def project_fn(input_vector):
|
| 342 |
+
output_vector = np.zeros(len(words))
|
| 343 |
+
for word, val in input_vector.items():
|
| 344 |
+
if word in words:
|
| 345 |
+
output_vector[words.index(word)] = val
|
| 346 |
+
return output_vector @ Vt_k.T
|
| 347 |
+
|
| 348 |
+
return [vec for vec in doc_matrix], project_fn
|
| 349 |
+
|
| 350 |
+
def formated_output_for_doc(doc):
|
| 351 |
+
res = ''
|
| 352 |
+
res = res + '# ' + ' '.join(doc.title) + '\n'
|
| 353 |
+
if doc.author:
|
| 354 |
+
res = res + ' by ' + ' '.join(doc.author) + '\n'
|
| 355 |
+
if doc.abstract:
|
| 356 |
+
res = res + ' ' + ' '.join(doc.abstract) + '\n'
|
| 357 |
+
return res
|
| 358 |
+
|
| 359 |
+
### Search
|
| 360 |
+
|
| 361 |
+
def setup():
|
| 362 |
+
# args = parse_args()
|
| 363 |
+
args = argparse.Namespace(use_svd=True, svd_rank=3000)
|
| 364 |
+
|
| 365 |
+
print('Starting search engine ', end='')
|
| 366 |
+
if args.use_svd:
|
| 367 |
+
print('(with SVD) ', end='')
|
| 368 |
+
|
| 369 |
+
# Start the spinner in a separate thread
|
| 370 |
+
spinner_thread = threading.Thread(target=spinner, args=(stop_event,))
|
| 371 |
+
spinner_thread.start()
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
docs = read_docs('cacm.raw')
|
| 375 |
+
# queries = read_docs('query.raw')
|
| 376 |
+
# rels = read_rels('query.rels')
|
| 377 |
+
stopwords = read_stopwords('common_words')
|
| 378 |
+
|
| 379 |
+
term_func = compute_tfidf
|
| 380 |
+
sim_func = cosine_sim
|
| 381 |
+
svd_rank = args.svd_rank
|
| 382 |
+
|
| 383 |
+
# for svd_rank, term, stem, removestop, sim, term_weights in itertools.product(*permutations):
|
| 384 |
+
stem = True
|
| 385 |
+
removestop = True
|
| 386 |
+
term_weights = TermWeights(author=3, title=3, keyword=4, abstract=1)
|
| 387 |
+
|
| 388 |
+
processed_docs = process_docs(docs, stem, removestop, stopwords)
|
| 389 |
+
doc_freqs = compute_doc_freqs(processed_docs)
|
| 390 |
+
doc_vectors = [term_func(doc, doc_freqs, term_weights) for doc in processed_docs]
|
| 391 |
+
if args.use_svd:
|
| 392 |
+
doc_vectors, svd_project_fn = sparse_svd(doc_vectors, svd_rank)
|
| 393 |
+
|
| 394 |
+
# Stop the spinner
|
| 395 |
+
stop_event.set()
|
| 396 |
+
spinner_thread.join()
|
| 397 |
+
|
| 398 |
+
def search_query(query):
|
| 399 |
+
tmp_query_file = '/tmp/irhw2'
|
| 400 |
+
with open(tmp_query_file, 'w') as f:
|
| 401 |
+
print(f"""
|
| 402 |
+
|
| 403 |
+
.I 1
|
| 404 |
+
.W
|
| 405 |
+
{query}
|
| 406 |
+
""", file=f)
|
| 407 |
+
queries = read_docs(tmp_query_file)
|
| 408 |
+
processed_queries = process_docs(queries, stem, removestop, stopwords)
|
| 409 |
+
|
| 410 |
+
query = processed_queries[0]
|
| 411 |
+
query_vec = term_func(query, doc_freqs, term_weights)
|
| 412 |
+
if args.use_svd:
|
| 413 |
+
query_vec = svd_project_fn(query_vec)
|
| 414 |
+
results = search(doc_vectors, query_vec, sim_func)
|
| 415 |
+
return results
|
| 416 |
+
|
| 417 |
+
docs_present = read_docs_for_presentation('cacm.raw')
|
| 418 |
+
|
| 419 |
+
return search_query, docs_present
|
| 420 |
+
|
| 421 |
+
def process_docs(docs, stem, removestop, stopwords):
|
| 422 |
+
processed_docs = docs
|
| 423 |
+
if removestop:
|
| 424 |
+
processed_docs = remove_stopwords(processed_docs)
|
| 425 |
+
if stem:
|
| 426 |
+
processed_docs = stem_docs(processed_docs)
|
| 427 |
+
return processed_docs
|
| 428 |
+
|
| 429 |
+
def process_docs_and_queries(docs, queries, stem, removestop, stopwords):
|
| 430 |
+
processed_docs = docs
|
| 431 |
+
processed_queries = queries
|
| 432 |
+
if removestop:
|
| 433 |
+
processed_docs = remove_stopwords(processed_docs)
|
| 434 |
+
processed_queries = remove_stopwords(processed_queries)
|
| 435 |
+
if stem:
|
| 436 |
+
processed_docs = stem_docs(processed_docs)
|
| 437 |
+
processed_queries = stem_docs(processed_queries)
|
| 438 |
+
return processed_docs, processed_queries
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
def search(doc_vectors, query_vec, sim):
|
| 442 |
+
results_with_score = [(doc_id + 1, sim(query_vec, doc_vec))
|
| 443 |
+
for doc_id, doc_vec in enumerate(doc_vectors)]
|
| 444 |
+
results_with_score = sorted(results_with_score, key=lambda x: -x[1])
|
| 445 |
+
return results_with_score
|
| 446 |
+
results = [x[0] for x in results_with_score]
|
| 447 |
+
return results
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
def search_debug(docs, query, relevant, doc_vectors, query_vec, sim):
|
| 451 |
+
results_with_score = [(doc_id + 1, sim(query_vec, doc_vec))
|
| 452 |
+
for doc_id, doc_vec in enumerate(doc_vectors)]
|
| 453 |
+
results_with_score = sorted(results_with_score, key=lambda x: -x[1])
|
| 454 |
+
results = [x[0] for x in results_with_score]
|
| 455 |
+
|
| 456 |
+
print('Query:', query)
|
| 457 |
+
print('Relevant docs: ', relevant)
|
| 458 |
+
print()
|
| 459 |
+
for doc_id, score in results_with_score[:10]:
|
| 460 |
+
print('Score:', score)
|
| 461 |
+
print(docs[doc_id - 1])
|
| 462 |
+
print()
|
| 463 |
+
|
| 464 |
+
def parse_args():
|
| 465 |
+
arg_parser = argparse.ArgumentParser()
|
| 466 |
+
arg_parser.add_argument('--use_svd', action='store_true')
|
| 467 |
+
arg_parser.add_argument('--svd_rank', type=int, default=3000)
|
| 468 |
+
return arg_parser.parse_args()
|
| 469 |
+
|
| 470 |
+
search_query, docs = setup()
|
| 471 |
+
|
| 472 |
+
with gr.Blocks() as demo:
|
| 473 |
+
gr.Markdown("# Search Engine")
|
| 474 |
+
with gr.Row():
|
| 475 |
+
query = gr.Textbox(label="Query", autofocus=True)
|
| 476 |
+
|
| 477 |
+
# with gr.Row():
|
| 478 |
+
# search_results = gr.Textbox(lines=5, label="Results")
|
| 479 |
+
#
|
| 480 |
+
|
| 481 |
+
num_results_step = 5
|
| 482 |
+
num_results = gr.State(num_results_step)
|
| 483 |
+
|
| 484 |
+
@gr.render(inputs=[query, num_results], triggers=[query.submit, num_results.change])
|
| 485 |
+
def render_results(query, num_res):
|
| 486 |
+
if query.strip() != '':
|
| 487 |
+
results = search_query(query)[:num_res]
|
| 488 |
+
for doc_id, score in results:
|
| 489 |
+
doc = docs[doc_id - 1]
|
| 490 |
+
html = f"""
|
| 491 |
+
<div style="margin: 30px 0">
|
| 492 |
+
<div style="display: flex; align-items: center; gap: 10px;">
|
| 493 |
+
<img src="https://www.cs.jhu.edu/favicon.ico" width="25px">
|
| 494 |
+
<div style="color: #202124; font-size: 14px;">{doc.author if doc.author.strip() else 'No author provided'}</div>
|
| 495 |
+
</div>
|
| 496 |
+
<div style="font-size: 20px; color: rgb(26, 13, 171); cursor: pointer; margin: 10px 0" onclick="alert('Just a mockup search engine, lol.')">{doc.title}</div>
|
| 497 |
+
<div style="color: rgb(71, 71, 71);">{doc.abstract if doc.abstract.strip() else 'No abstract provided'}<br>Relevance score: {score:.3f}</div>
|
| 498 |
+
</div>
|
| 499 |
+
"""
|
| 500 |
+
gr.HTML(html)
|
| 501 |
+
gr.HTML('<div style="margin: 50px"></div>')
|
| 502 |
+
# more_btn = gr.HTML('''
|
| 503 |
+
# <div style="display: flex;justify-content: center; margin: 40px">
|
| 504 |
+
# <div style="color: rgb(26, 13, 171); font-size: 18px; font-weight: 600; cursor: pointer">More like this</div>
|
| 505 |
+
# </div>''')
|
| 506 |
+
more_btn = gr.Button('More like this')
|
| 507 |
+
more_btn.click(lambda x: x + num_results_step, num_results, num_results)
|
| 508 |
+
|
| 509 |
+
query.change(lambda _: num_results_step, num_results, num_results)
|
| 510 |
+
|
| 511 |
+
if __name__ == '__main__':
|
| 512 |
+
demo.launch(
|
| 513 |
+
# server_name="0.0.0.0",
|
| 514 |
+
server_port=7861,
|
| 515 |
+
)
|