Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import os
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
# Hugging Face Inference API endpoint for DeepSeek
|
| 7 |
+
API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/DeepSeek-V2"
|
| 8 |
+
headers = {"Authorization": f"Bearer {os.environ['HF_API_TOKEN']}"}
|
| 9 |
+
|
| 10 |
+
def preprocess_csv(file_path):
|
| 11 |
+
df = pd.read_csv(file_path)
|
| 12 |
+
events = []
|
| 13 |
+
for _, row in df.iterrows():
|
| 14 |
+
events.append(f"On {row['Date']} at {row['Time']}, state was {row['State']} → {row['Message Text']}")
|
| 15 |
+
return "\n".join(events)
|
| 16 |
+
|
| 17 |
+
def analyze_log(file_path, mode):
|
| 18 |
+
text = preprocess_csv(file_path)
|
| 19 |
+
|
| 20 |
+
# Build prompt depending on mode
|
| 21 |
+
if mode == "Summarize":
|
| 22 |
+
prompt = "Summarize the following AHU alarm log:\n\n" + text
|
| 23 |
+
elif mode == "Highlight anomalies":
|
| 24 |
+
prompt = "Identify unusual or repeated alarms in this AHU log and explain possible causes:\n\n" + text
|
| 25 |
+
elif mode == "Suggest maintenance":
|
| 26 |
+
prompt = "Based on this AHU alarm log, suggest maintenance actions:\n\n" + text
|
| 27 |
+
else:
|
| 28 |
+
prompt = text
|
| 29 |
+
|
| 30 |
+
# Call Hugging Face Inference API
|
| 31 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
| 32 |
+
|
| 33 |
+
if response.status_code != 200:
|
| 34 |
+
return f"Error {response.status_code}: {response.text}"
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
result = response.json()
|
| 38 |
+
except Exception:
|
| 39 |
+
return f"Failed to decode JSON. Raw response: {response.text}"
|
| 40 |
+
|
| 41 |
+
# Extract generated text
|
| 42 |
+
if isinstance(result, list) and "generated_text" in result[0]:
|
| 43 |
+
return result[0]["generated_text"]
|
| 44 |
+
elif isinstance(result, dict) and "generated_text" in result:
|
| 45 |
+
return result["generated_text"]
|
| 46 |
+
else:
|
| 47 |
+
return str(result)
|
| 48 |
+
|
| 49 |
+
iface = gr.Interface(
|
| 50 |
+
fn=analyze_log,
|
| 51 |
+
inputs=[
|
| 52 |
+
gr.File(type="filepath", label="Upload Log File"),
|
| 53 |
+
gr.Dropdown(choices=["Summarize", "Highlight anomalies", "Suggest maintenance"], label="Analysis Mode")
|
| 54 |
+
],
|
| 55 |
+
outputs="text",
|
| 56 |
+
title="AHU Log Analyzer (DeepSeek API)",
|
| 57 |
+
description="Upload your log file (CSV) and choose how you want it analyzed using DeepSeek via Hugging Face API."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
if __name__ == "__main__":
|
| 61 |
+
iface.launch()
|