ecceembusra commited on
Commit
d223ea8
·
1 Parent(s): c788274

Add FAISS vectorstore and metadata

Browse files
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .venv/
2
+ _pycache_/
providers.py CHANGED
@@ -1,3 +1,4 @@
 
1
  # providers.py
2
  from typing import List
3
  import os
@@ -118,4 +119,126 @@ def generate(prompt: str) -> str:
118
  )
119
  return response.text.strip() if hasattr(response, "text") else "Cevap oluşturulamadı."
120
  except Exception as e:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  return f"LLM hata: {e}"
 
1
+ <<<<<<< HEAD
2
  # providers.py
3
  from typing import List
4
  import os
 
119
  )
120
  return response.text.strip() if hasattr(response, "text") else "Cevap oluşturulamadı."
121
  except Exception as e:
122
+ =======
123
+ # providers.py
124
+ from typing import List
125
+ import os
126
+ import numpy as np
127
+ import torch
128
+ from functools import lru_cache
129
+ from sentence_transformers import SentenceTransformer, CrossEncoder
130
+
131
+ from dotenv import load_dotenv
132
+
133
+ # .env dosyasını oku
134
+ load_dotenv()
135
+
136
+ # API anahtarını al
137
+ GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
138
+ if not GOOGLE_API_KEY:
139
+ print("⚠️ Uyarı: GOOGLE_API_KEY .env dosyasında bulunamadı!")
140
+
141
+ # =========================
142
+ # CONFIG (env ile override)
143
+ # =========================
144
+ EMB_MODEL_NAME = os.getenv("EMB_MODEL", "intfloat/multilingual-e5-small")
145
+ # Hız için default MiniLM; Jina kullanmak istersen RERANKER_MODEL=jinaai/jina-reranker-v2-base-multilingual
146
+ RERANKER_NAME = os.getenv("RERANKER_MODEL", "cross-encoder/ms-marco-MiniLM-L-6-v2")
147
+ GEMINI_MODEL = os.getenv("GEMINI_MODEL", "gemini-1.5-flash")
148
+
149
+ # =========================
150
+ # Embedding (E5)
151
+ # =========================
152
+
153
+ _emb_model: SentenceTransformer | None = None
154
+
155
+ def _get_emb_model() -> SentenceTransformer:
156
+ global _emb_model
157
+ if _emb_model is None:
158
+ # CPU'da stabil ve hızlı çalışması için
159
+ torch.set_num_threads(max(1, (os.cpu_count() or 4) // 2))
160
+ _emb_model = SentenceTransformer(EMB_MODEL_NAME)
161
+ return _emb_model
162
+
163
+ def embed(texts: List[str]) -> np.ndarray:
164
+ """E5 embedding üretir (normalize etmez)."""
165
+ model = _get_emb_model()
166
+ vecs = model.encode(
167
+ texts,
168
+ batch_size=32,
169
+ show_progress_bar=False,
170
+ convert_to_numpy=True,
171
+ normalize_embeddings=False,
172
+ )
173
+ return vecs
174
+
175
+ # =========================
176
+ # Reranker (Cross-Encoder)
177
+ # =========================
178
+
179
+ _reranker: CrossEncoder | None = None
180
+
181
+ def _get_reranker() -> CrossEncoder:
182
+ global _reranker
183
+ if _reranker is None:
184
+
185
+ trust = "jina" in RERANKER_NAME.lower()
186
+ _reranker = CrossEncoder(
187
+ RERANKER_NAME,
188
+ max_length=384,
189
+ trust_remote_code=trust,
190
+ )
191
+ return _reranker
192
+
193
+ def rerank(query: str, candidates: List[str]) -> List[float]:
194
+ """Sorgu + aday pasajlar için alaka skorları döndürür (yüksek skor = daha alakalı)."""
195
+ model = _get_reranker()
196
+ pairs = [[query, c] for c in candidates]
197
+ scores = model.predict(pairs, convert_to_numpy=True, show_progress_bar=False)
198
+ return scores.tolist()
199
+
200
+ # =========================
201
+ # (Opsiyonel) Ekstraktif QA – TR SQuAD
202
+ # =========================
203
+
204
+ _QA_MODEL = os.getenv("QA_MODEL", "savasy/bert-base-turkish-squad")
205
+ _qa_pipe = None # lazy load
206
+
207
+ def qa_extract(question: str, context: str) -> dict:
208
+ """
209
+ Pasajdan doğrudan cevap span'ı çıkarır.
210
+ Dönen örnek: {'answer': '1907', 'score': 0.93, 'start': 123, 'end': 127}
211
+ Kullanmazsan çağırma; yüklenmez ve hız etkisi olmaz.
212
+ """
213
+ global _qa_pipe
214
+ if _qa_pipe is None:
215
+ from transformers import pipeline # import burada ki ihtiyaca göre yüklensin
216
+ _qa_pipe = pipeline("question-answering", model=_QA_MODEL, tokenizer=_QA_MODEL)
217
+ res = _qa_pipe(question=question, context=context)
218
+ return dict(res)
219
+
220
+ # =========================
221
+ # LLM: Google Gemini
222
+ # =========================
223
+
224
+ def generate(prompt: str) -> str:
225
+ """
226
+ Gemini ile üretken cevap. GOOGLE_API_KEY yoksa 'LLM yapılandırılmadı.' döner.
227
+ """
228
+ api_key = os.getenv("GOOGLE_API_KEY")
229
+ if not api_key:
230
+ return "LLM yapılandırılmadı."
231
+ try:
232
+ import google.generativeai as genai
233
+ genai.configure(api_key=api_key)
234
+ model = genai.GenerativeModel(GEMINI_MODEL)
235
+ response = model.generate_content(
236
+ prompt,
237
+ generation_config=genai.types.GenerationConfig(
238
+ temperature=0.1, max_output_tokens=300, top_p=0.8
239
+ ),
240
+ )
241
+ return response.text.strip() if hasattr(response, "text") else "Cevap oluşturulamadı."
242
+ except Exception as e:
243
+ >>>>>>> 1dc9f7f1 (Add FAISS vectorstore and metadata)
244
  return f"LLM hata: {e}"
vectorstore/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34a05ed4dedffc5f6743e61a3befea015b633e541a5570f89eeaa579d38e8bd7
3
+ size 12167654
vectorstore/meta.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdf60452691daf0cae6a961ae65c73bff232ebad0470008a7cee2a03eac1991a
3
+ size 7850069
vectorstore/signature.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28f5b7b82e934b18c2341f84c8a85679bb3eac85aed26a6c938ec188f9e616ed
3
+ size 287