Spaces:
Runtime error
Runtime error
Commit
·
34d1ef9
1
Parent(s):
fe525fc
Upload network_fbcnn.py
Browse files- network_fbcnn.py +337 -0
network_fbcnn.py
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import torchvision.models as models
|
| 7 |
+
|
| 8 |
+
'''
|
| 9 |
+
# --------------------------------------------
|
| 10 |
+
# Advanced nn.Sequential
|
| 11 |
+
# https://github.com/xinntao/BasicSR
|
| 12 |
+
# --------------------------------------------
|
| 13 |
+
'''
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def sequential(*args):
|
| 17 |
+
"""Advanced nn.Sequential.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
nn.Sequential, nn.Module
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
nn.Sequential
|
| 24 |
+
"""
|
| 25 |
+
if len(args) == 1:
|
| 26 |
+
if isinstance(args[0], OrderedDict):
|
| 27 |
+
raise NotImplementedError('sequential does not support OrderedDict input.')
|
| 28 |
+
return args[0] # No sequential is needed.
|
| 29 |
+
modules = []
|
| 30 |
+
for module in args:
|
| 31 |
+
if isinstance(module, nn.Sequential):
|
| 32 |
+
for submodule in module.children():
|
| 33 |
+
modules.append(submodule)
|
| 34 |
+
elif isinstance(module, nn.Module):
|
| 35 |
+
modules.append(module)
|
| 36 |
+
return nn.Sequential(*modules)
|
| 37 |
+
|
| 38 |
+
# --------------------------------------------
|
| 39 |
+
# return nn.Sequantial of (Conv + BN + ReLU)
|
| 40 |
+
# --------------------------------------------
|
| 41 |
+
def conv(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CBR', negative_slope=0.2):
|
| 42 |
+
L = []
|
| 43 |
+
for t in mode:
|
| 44 |
+
if t == 'C':
|
| 45 |
+
L.append(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
|
| 46 |
+
elif t == 'T':
|
| 47 |
+
L.append(nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
|
| 48 |
+
elif t == 'B':
|
| 49 |
+
L.append(nn.BatchNorm2d(out_channels, momentum=0.9, eps=1e-04, affine=True))
|
| 50 |
+
elif t == 'I':
|
| 51 |
+
L.append(nn.InstanceNorm2d(out_channels, affine=True))
|
| 52 |
+
elif t == 'R':
|
| 53 |
+
L.append(nn.ReLU(inplace=True))
|
| 54 |
+
elif t == 'r':
|
| 55 |
+
L.append(nn.ReLU(inplace=False))
|
| 56 |
+
elif t == 'L':
|
| 57 |
+
L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=True))
|
| 58 |
+
elif t == 'l':
|
| 59 |
+
L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=False))
|
| 60 |
+
elif t == '2':
|
| 61 |
+
L.append(nn.PixelShuffle(upscale_factor=2))
|
| 62 |
+
elif t == '3':
|
| 63 |
+
L.append(nn.PixelShuffle(upscale_factor=3))
|
| 64 |
+
elif t == '4':
|
| 65 |
+
L.append(nn.PixelShuffle(upscale_factor=4))
|
| 66 |
+
elif t == 'U':
|
| 67 |
+
L.append(nn.Upsample(scale_factor=2, mode='nearest'))
|
| 68 |
+
elif t == 'u':
|
| 69 |
+
L.append(nn.Upsample(scale_factor=3, mode='nearest'))
|
| 70 |
+
elif t == 'v':
|
| 71 |
+
L.append(nn.Upsample(scale_factor=4, mode='nearest'))
|
| 72 |
+
elif t == 'M':
|
| 73 |
+
L.append(nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=0))
|
| 74 |
+
elif t == 'A':
|
| 75 |
+
L.append(nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0))
|
| 76 |
+
else:
|
| 77 |
+
raise NotImplementedError('Undefined type: '.format(t))
|
| 78 |
+
return sequential(*L)
|
| 79 |
+
|
| 80 |
+
# --------------------------------------------
|
| 81 |
+
# Res Block: x + conv(relu(conv(x)))
|
| 82 |
+
# --------------------------------------------
|
| 83 |
+
class ResBlock(nn.Module):
|
| 84 |
+
def __init__(self, in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CRC', negative_slope=0.2):
|
| 85 |
+
super(ResBlock, self).__init__()
|
| 86 |
+
|
| 87 |
+
assert in_channels == out_channels, 'Only support in_channels==out_channels.'
|
| 88 |
+
if mode[0] in ['R', 'L']:
|
| 89 |
+
mode = mode[0].lower() + mode[1:]
|
| 90 |
+
|
| 91 |
+
self.res = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode, negative_slope)
|
| 92 |
+
|
| 93 |
+
def forward(self, x):
|
| 94 |
+
res = self.res(x)
|
| 95 |
+
return x + res
|
| 96 |
+
|
| 97 |
+
# --------------------------------------------
|
| 98 |
+
# conv + subp (+ relu)
|
| 99 |
+
# --------------------------------------------
|
| 100 |
+
def upsample_pixelshuffle(in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1, bias=True, mode='2R', negative_slope=0.2):
|
| 101 |
+
assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
|
| 102 |
+
up1 = conv(in_channels, out_channels * (int(mode[0]) ** 2), kernel_size, stride, padding, bias, mode='C'+mode, negative_slope=negative_slope)
|
| 103 |
+
return up1
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# --------------------------------------------
|
| 107 |
+
# nearest_upsample + conv (+ R)
|
| 108 |
+
# --------------------------------------------
|
| 109 |
+
def upsample_upconv(in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1, bias=True, mode='2R', negative_slope=0.2):
|
| 110 |
+
assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR'
|
| 111 |
+
if mode[0] == '2':
|
| 112 |
+
uc = 'UC'
|
| 113 |
+
elif mode[0] == '3':
|
| 114 |
+
uc = 'uC'
|
| 115 |
+
elif mode[0] == '4':
|
| 116 |
+
uc = 'vC'
|
| 117 |
+
mode = mode.replace(mode[0], uc)
|
| 118 |
+
up1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode, negative_slope=negative_slope)
|
| 119 |
+
return up1
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# --------------------------------------------
|
| 123 |
+
# convTranspose (+ relu)
|
| 124 |
+
# --------------------------------------------
|
| 125 |
+
def upsample_convtranspose(in_channels=64, out_channels=3, kernel_size=2, stride=2, padding=0, bias=True, mode='2R', negative_slope=0.2):
|
| 126 |
+
assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
|
| 127 |
+
kernel_size = int(mode[0])
|
| 128 |
+
stride = int(mode[0])
|
| 129 |
+
mode = mode.replace(mode[0], 'T')
|
| 130 |
+
up1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode, negative_slope)
|
| 131 |
+
return up1
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
'''
|
| 135 |
+
# --------------------------------------------
|
| 136 |
+
# Downsampler
|
| 137 |
+
# Kai Zhang, https://github.com/cszn/KAIR
|
| 138 |
+
# --------------------------------------------
|
| 139 |
+
# downsample_strideconv
|
| 140 |
+
# downsample_maxpool
|
| 141 |
+
# downsample_avgpool
|
| 142 |
+
# --------------------------------------------
|
| 143 |
+
'''
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# --------------------------------------------
|
| 147 |
+
# strideconv (+ relu)
|
| 148 |
+
# --------------------------------------------
|
| 149 |
+
def downsample_strideconv(in_channels=64, out_channels=64, kernel_size=2, stride=2, padding=0, bias=True, mode='2R', negative_slope=0.2):
|
| 150 |
+
assert len(mode)<4 and mode[0] in ['2', '3', '4'], 'mode examples: 2, 2R, 2BR, 3, ..., 4BR.'
|
| 151 |
+
kernel_size = int(mode[0])
|
| 152 |
+
stride = int(mode[0])
|
| 153 |
+
mode = mode.replace(mode[0], 'C')
|
| 154 |
+
down1 = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode, negative_slope)
|
| 155 |
+
return down1
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# --------------------------------------------
|
| 159 |
+
# maxpooling + conv (+ relu)
|
| 160 |
+
# --------------------------------------------
|
| 161 |
+
def downsample_maxpool(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=0, bias=True, mode='2R', negative_slope=0.2):
|
| 162 |
+
assert len(mode)<4 and mode[0] in ['2', '3'], 'mode examples: 2, 2R, 2BR, 3, ..., 3BR.'
|
| 163 |
+
kernel_size_pool = int(mode[0])
|
| 164 |
+
stride_pool = int(mode[0])
|
| 165 |
+
mode = mode.replace(mode[0], 'MC')
|
| 166 |
+
pool = conv(kernel_size=kernel_size_pool, stride=stride_pool, mode=mode[0], negative_slope=negative_slope)
|
| 167 |
+
pool_tail = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode[1:], negative_slope=negative_slope)
|
| 168 |
+
return sequential(pool, pool_tail)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
# --------------------------------------------
|
| 172 |
+
# averagepooling + conv (+ relu)
|
| 173 |
+
# --------------------------------------------
|
| 174 |
+
def downsample_avgpool(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='2R', negative_slope=0.2):
|
| 175 |
+
assert len(mode)<4 and mode[0] in ['2', '3'], 'mode examples: 2, 2R, 2BR, 3, ..., 3BR.'
|
| 176 |
+
kernel_size_pool = int(mode[0])
|
| 177 |
+
stride_pool = int(mode[0])
|
| 178 |
+
mode = mode.replace(mode[0], 'AC')
|
| 179 |
+
pool = conv(kernel_size=kernel_size_pool, stride=stride_pool, mode=mode[0], negative_slope=negative_slope)
|
| 180 |
+
pool_tail = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode=mode[1:], negative_slope=negative_slope)
|
| 181 |
+
return sequential(pool, pool_tail)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class QFAttention(nn.Module):
|
| 186 |
+
def __init__(self, in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True, mode='CRC', negative_slope=0.2):
|
| 187 |
+
super(QFAttention, self).__init__()
|
| 188 |
+
|
| 189 |
+
assert in_channels == out_channels, 'Only support in_channels==out_channels.'
|
| 190 |
+
if mode[0] in ['R', 'L']:
|
| 191 |
+
mode = mode[0].lower() + mode[1:]
|
| 192 |
+
|
| 193 |
+
self.res = conv(in_channels, out_channels, kernel_size, stride, padding, bias, mode, negative_slope)
|
| 194 |
+
|
| 195 |
+
def forward(self, x, gamma, beta):
|
| 196 |
+
gamma = gamma.unsqueeze(-1).unsqueeze(-1)
|
| 197 |
+
beta = beta.unsqueeze(-1).unsqueeze(-1)
|
| 198 |
+
res = (gamma)*self.res(x) + beta
|
| 199 |
+
return x + res
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
class FBCNN(nn.Module):
|
| 203 |
+
def __init__(self, in_nc=3, out_nc=3, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode='strideconv',
|
| 204 |
+
upsample_mode='convtranspose'):
|
| 205 |
+
super(FBCNN, self).__init__()
|
| 206 |
+
|
| 207 |
+
self.m_head = conv(in_nc, nc[0], bias=True, mode='C')
|
| 208 |
+
self.nb = nb
|
| 209 |
+
self.nc = nc
|
| 210 |
+
# downsample
|
| 211 |
+
if downsample_mode == 'avgpool':
|
| 212 |
+
downsample_block = downsample_avgpool
|
| 213 |
+
elif downsample_mode == 'maxpool':
|
| 214 |
+
downsample_block = downsample_maxpool
|
| 215 |
+
elif downsample_mode == 'strideconv':
|
| 216 |
+
downsample_block = downsample_strideconv
|
| 217 |
+
else:
|
| 218 |
+
raise NotImplementedError('downsample mode [{:s}] is not found'.format(downsample_mode))
|
| 219 |
+
|
| 220 |
+
self.m_down1 = sequential(
|
| 221 |
+
*[ResBlock(nc[0], nc[0], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)],
|
| 222 |
+
downsample_block(nc[0], nc[1], bias=True, mode='2'))
|
| 223 |
+
self.m_down2 = sequential(
|
| 224 |
+
*[ResBlock(nc[1], nc[1], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)],
|
| 225 |
+
downsample_block(nc[1], nc[2], bias=True, mode='2'))
|
| 226 |
+
self.m_down3 = sequential(
|
| 227 |
+
*[ResBlock(nc[2], nc[2], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)],
|
| 228 |
+
downsample_block(nc[2], nc[3], bias=True, mode='2'))
|
| 229 |
+
|
| 230 |
+
self.m_body_encoder = sequential(
|
| 231 |
+
*[ResBlock(nc[3], nc[3], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)])
|
| 232 |
+
|
| 233 |
+
self.m_body_decoder = sequential(
|
| 234 |
+
*[ResBlock(nc[3], nc[3], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)])
|
| 235 |
+
|
| 236 |
+
# upsample
|
| 237 |
+
if upsample_mode == 'upconv':
|
| 238 |
+
upsample_block = upsample_upconv
|
| 239 |
+
elif upsample_mode == 'pixelshuffle':
|
| 240 |
+
upsample_block = upsample_pixelshuffle
|
| 241 |
+
elif upsample_mode == 'convtranspose':
|
| 242 |
+
upsample_block = upsample_convtranspose
|
| 243 |
+
else:
|
| 244 |
+
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))
|
| 245 |
+
|
| 246 |
+
self.m_up3 = nn.ModuleList([upsample_block(nc[3], nc[2], bias=True, mode='2'),
|
| 247 |
+
*[QFAttention(nc[2], nc[2], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)]])
|
| 248 |
+
|
| 249 |
+
self.m_up2 = nn.ModuleList([upsample_block(nc[2], nc[1], bias=True, mode='2'),
|
| 250 |
+
*[QFAttention(nc[1], nc[1], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)]])
|
| 251 |
+
|
| 252 |
+
self.m_up1 = nn.ModuleList([upsample_block(nc[1], nc[0], bias=True, mode='2'),
|
| 253 |
+
*[QFAttention(nc[0], nc[0], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)]])
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
self.m_tail = conv(nc[0], out_nc, bias=True, mode='C')
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
self.qf_pred = sequential(*[ResBlock(nc[3], nc[3], bias=True, mode='C' + act_mode + 'C') for _ in range(nb)],
|
| 260 |
+
torch.nn.AdaptiveAvgPool2d((1,1)),
|
| 261 |
+
torch.nn.Flatten(),
|
| 262 |
+
torch.nn.Linear(512, 512),
|
| 263 |
+
nn.ReLU(),
|
| 264 |
+
torch.nn.Linear(512, 512),
|
| 265 |
+
nn.ReLU(),
|
| 266 |
+
torch.nn.Linear(512, 1),
|
| 267 |
+
nn.Sigmoid()
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
self.qf_embed = sequential(torch.nn.Linear(1, 512),
|
| 271 |
+
nn.ReLU(),
|
| 272 |
+
torch.nn.Linear(512, 512),
|
| 273 |
+
nn.ReLU(),
|
| 274 |
+
torch.nn.Linear(512, 512),
|
| 275 |
+
nn.ReLU()
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
self.to_gamma_3 = sequential(torch.nn.Linear(512, nc[2]),nn.Sigmoid())
|
| 279 |
+
self.to_beta_3 = sequential(torch.nn.Linear(512, nc[2]),nn.Tanh())
|
| 280 |
+
self.to_gamma_2 = sequential(torch.nn.Linear(512, nc[1]),nn.Sigmoid())
|
| 281 |
+
self.to_beta_2 = sequential(torch.nn.Linear(512, nc[1]),nn.Tanh())
|
| 282 |
+
self.to_gamma_1 = sequential(torch.nn.Linear(512, nc[0]),nn.Sigmoid())
|
| 283 |
+
self.to_beta_1 = sequential(torch.nn.Linear(512, nc[0]),nn.Tanh())
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def forward(self, x, qf_input=None):
|
| 287 |
+
|
| 288 |
+
h, w = x.size()[-2:]
|
| 289 |
+
paddingBottom = int(np.ceil(h / 8) * 8 - h)
|
| 290 |
+
paddingRight = int(np.ceil(w / 8) * 8 - w)
|
| 291 |
+
x = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x)
|
| 292 |
+
|
| 293 |
+
x1 = self.m_head(x)
|
| 294 |
+
x2 = self.m_down1(x1)
|
| 295 |
+
x3 = self.m_down2(x2)
|
| 296 |
+
x4 = self.m_down3(x3)
|
| 297 |
+
x = self.m_body_encoder(x4)
|
| 298 |
+
qf = self.qf_pred(x)
|
| 299 |
+
x = self.m_body_decoder(x)
|
| 300 |
+
qf_embedding = self.qf_embed(qf_input) if qf_input is not None else self.qf_embed(qf)
|
| 301 |
+
gamma_3 = self.to_gamma_3(qf_embedding)
|
| 302 |
+
beta_3 = self.to_beta_3(qf_embedding)
|
| 303 |
+
|
| 304 |
+
gamma_2 = self.to_gamma_2(qf_embedding)
|
| 305 |
+
beta_2 = self.to_beta_2(qf_embedding)
|
| 306 |
+
|
| 307 |
+
gamma_1 = self.to_gamma_1(qf_embedding)
|
| 308 |
+
beta_1 = self.to_beta_1(qf_embedding)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
x = x + x4
|
| 312 |
+
x = self.m_up3[0](x)
|
| 313 |
+
for i in range(self.nb):
|
| 314 |
+
x = self.m_up3[i+1](x, gamma_3,beta_3)
|
| 315 |
+
|
| 316 |
+
x = x + x3
|
| 317 |
+
|
| 318 |
+
x = self.m_up2[0](x)
|
| 319 |
+
for i in range(self.nb):
|
| 320 |
+
x = self.m_up2[i+1](x, gamma_2, beta_2)
|
| 321 |
+
x = x + x2
|
| 322 |
+
|
| 323 |
+
x = self.m_up1[0](x)
|
| 324 |
+
for i in range(self.nb):
|
| 325 |
+
x = self.m_up1[i+1](x, gamma_1, beta_1)
|
| 326 |
+
|
| 327 |
+
x = x + x1
|
| 328 |
+
x = self.m_tail(x)
|
| 329 |
+
x = x[..., :h, :w]
|
| 330 |
+
|
| 331 |
+
return x, qf
|
| 332 |
+
|
| 333 |
+
if __name__ == "__main__":
|
| 334 |
+
x = torch.randn(1, 3, 96, 96)#.cuda()#.to(torch.device('cuda'))
|
| 335 |
+
fbar=FBAR()
|
| 336 |
+
y,qf = fbar(x)
|
| 337 |
+
print(y.shape,qf.shape)
|