Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| MODEL_NAME = "curiousily/tiny-crypto-sentiment-analysis" | |
| def create_tokenizer(model_name: str = MODEL_NAME) -> AutoTokenizer: | |
| return AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
| def create_model(model_name: str = MODEL_NAME) -> AutoModelForCausalLM: | |
| return AutoModelForCausalLM.from_pretrained( | |
| model_name, device_map="auto", torch_dtype=torch.float16 | |
| ) | |
| def predict( | |
| prompt: str, | |
| model: AutoModelForCausalLM, | |
| tokenizer: AutoTokenizer, | |
| max_new_tokens: int = 16, | |
| return_full_text: bool = False, | |
| ) -> str: | |
| encoding = tokenizer.encode(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate(inputs=encoding, max_new_tokens=max_new_tokens) | |
| if outputs.numel() == 0: | |
| return "" | |
| prediction = outputs[0] | |
| if not return_full_text: | |
| prediction = prediction[encoding.shape[1] :] | |
| return tokenizer.decode(prediction, skip_special_tokens=True).strip() | |