Spaces:
Runtime error
Runtime error
Create test_llama4.py
Browse files- test_llama4.py +158 -0
test_llama4.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoProcessor, Llama4ForConditionalGeneration
|
| 3 |
+
import time
|
| 4 |
+
import os
|
| 5 |
+
from huggingface_hub import login
|
| 6 |
+
import requests
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
|
| 10 |
+
# Print versions for debugging
|
| 11 |
+
import sys
|
| 12 |
+
print(f"Python version: {sys.version}")
|
| 13 |
+
print(f"PyTorch version: {torch.__version__}")
|
| 14 |
+
import transformers
|
| 15 |
+
print(f"Transformers version: {transformers.__version__}")
|
| 16 |
+
|
| 17 |
+
# Get token from environment
|
| 18 |
+
token = os.environ.get("HUGGINGFACE_TOKEN", "")
|
| 19 |
+
if token:
|
| 20 |
+
print(f"Token found: {token[:5]}...")
|
| 21 |
+
else:
|
| 22 |
+
print("No token found in environment variables!")
|
| 23 |
+
|
| 24 |
+
# Login to Hugging Face
|
| 25 |
+
try:
|
| 26 |
+
login(token=token)
|
| 27 |
+
print("Successfully logged in to Hugging Face Hub")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"Error logging in: {e}")
|
| 30 |
+
|
| 31 |
+
# Test 1: Simple text generation with Llama 4
|
| 32 |
+
def test_text_generation():
|
| 33 |
+
print("\n=== Testing Text Generation ===")
|
| 34 |
+
try:
|
| 35 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 36 |
+
|
| 37 |
+
model_id = "meta-llama/Llama-4-8B-Instruct" # Using smaller model for faster testing
|
| 38 |
+
|
| 39 |
+
print(f"Loading tokenizer from {model_id}...")
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
| 41 |
+
|
| 42 |
+
print(f"Loading model from {model_id}...")
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
model_id,
|
| 45 |
+
token=token,
|
| 46 |
+
torch_dtype=torch.bfloat16,
|
| 47 |
+
device_map="auto"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
print("Model and tokenizer loaded successfully!")
|
| 51 |
+
|
| 52 |
+
# Simple prompt
|
| 53 |
+
prompt = "Write a short poem about artificial intelligence."
|
| 54 |
+
|
| 55 |
+
print(f"Generating text for prompt: '{prompt}'")
|
| 56 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 57 |
+
|
| 58 |
+
start_time = time.time()
|
| 59 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 60 |
+
end_time = time.time()
|
| 61 |
+
|
| 62 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 63 |
+
|
| 64 |
+
print(f"Generation completed in {end_time - start_time:.2f} seconds")
|
| 65 |
+
print(f"Result: {result}")
|
| 66 |
+
return True
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Error in text generation test: {e}")
|
| 69 |
+
import traceback
|
| 70 |
+
print(traceback.format_exc())
|
| 71 |
+
return False
|
| 72 |
+
|
| 73 |
+
# Test 2: Image-text generation with Llama 4 Scout
|
| 74 |
+
def test_image_text_generation():
|
| 75 |
+
print("\n=== Testing Image-Text Generation ===")
|
| 76 |
+
try:
|
| 77 |
+
model_id = "meta-llama/Llama-4-Scout-8B-16E-Instruct" # Using smaller model for faster testing
|
| 78 |
+
|
| 79 |
+
print(f"Loading processor from {model_id}...")
|
| 80 |
+
processor = AutoProcessor.from_pretrained(model_id, token=token)
|
| 81 |
+
|
| 82 |
+
print(f"Loading model from {model_id}...")
|
| 83 |
+
model = Llama4ForConditionalGeneration.from_pretrained(
|
| 84 |
+
model_id,
|
| 85 |
+
token=token,
|
| 86 |
+
torch_dtype=torch.bfloat16,
|
| 87 |
+
device_map="auto"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
print("Model and processor loaded successfully!")
|
| 91 |
+
|
| 92 |
+
# Load a test image
|
| 93 |
+
print("Loading test image...")
|
| 94 |
+
response = requests.get("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")
|
| 95 |
+
img = Image.open(BytesIO(response.content))
|
| 96 |
+
print(f"Image loaded: {img.size}")
|
| 97 |
+
|
| 98 |
+
# Simple prompt
|
| 99 |
+
prompt = "Describe this image in two sentences."
|
| 100 |
+
|
| 101 |
+
print(f"Creating messages with prompt: '{prompt}'")
|
| 102 |
+
messages = [
|
| 103 |
+
{
|
| 104 |
+
"role": "user",
|
| 105 |
+
"content": [
|
| 106 |
+
{"type": "image", "url": "data:image/jpeg;base64," + BytesIO(response.content).getvalue().hex()},
|
| 107 |
+
{"type": "text", "text": prompt},
|
| 108 |
+
]
|
| 109 |
+
},
|
| 110 |
+
]
|
| 111 |
+
|
| 112 |
+
print("Applying chat template...")
|
| 113 |
+
inputs = processor.apply_chat_template(
|
| 114 |
+
messages,
|
| 115 |
+
add_generation_prompt=True,
|
| 116 |
+
tokenize=True,
|
| 117 |
+
return_dict=True,
|
| 118 |
+
return_tensors="pt",
|
| 119 |
+
).to(model.device)
|
| 120 |
+
|
| 121 |
+
print("Generating response...")
|
| 122 |
+
start_time = time.time()
|
| 123 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 124 |
+
end_time = time.time()
|
| 125 |
+
|
| 126 |
+
result = processor.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])[0]
|
| 127 |
+
|
| 128 |
+
print(f"Generation completed in {end_time - start_time:.2f} seconds")
|
| 129 |
+
print(f"Result: {result}")
|
| 130 |
+
return True
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Error in image-text generation test: {e}")
|
| 133 |
+
import traceback
|
| 134 |
+
print(traceback.format_exc())
|
| 135 |
+
return False
|
| 136 |
+
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
print("Starting Llama 4 tests...")
|
| 139 |
+
|
| 140 |
+
# Run text generation test
|
| 141 |
+
text_success = test_text_generation()
|
| 142 |
+
|
| 143 |
+
# Run image-text generation test if text test succeeds
|
| 144 |
+
if text_success:
|
| 145 |
+
image_text_success = test_image_text_generation()
|
| 146 |
+
else:
|
| 147 |
+
print("Skipping image-text test due to text test failure")
|
| 148 |
+
image_text_success = False
|
| 149 |
+
|
| 150 |
+
# Summary
|
| 151 |
+
print("\n=== Test Summary ===")
|
| 152 |
+
print(f"Text Generation Test: {'SUCCESS' if text_success else 'FAILED'}")
|
| 153 |
+
print(f"Image-Text Generation Test: {'SUCCESS' if image_text_success else 'FAILED'}")
|
| 154 |
+
|
| 155 |
+
if text_success and image_text_success:
|
| 156 |
+
print("\nAll tests passed! Your Llama 4 Scout setup is working correctly.")
|
| 157 |
+
else:
|
| 158 |
+
print("\nSome tests failed. Please check the error messages above.")
|