Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ from diffusers import StableDiffusionPipeline
|
|
| 14 |
from docx import Document
|
| 15 |
from pptx import Presentation
|
| 16 |
from io import BytesIO
|
| 17 |
-
import numpy as np
|
| 18 |
|
| 19 |
# --- CONFIGURATION & INITIALIZATION ---
|
| 20 |
STT_DEVICE = "cpu"
|
|
@@ -30,12 +30,15 @@ MODEL_FILE = "luna.gguf"
|
|
| 30 |
LOCAL_MODEL_PATH = MODEL_FILE
|
| 31 |
SYSTEM_PROMPT = (
|
| 32 |
"You are Luna, a helpful and friendly AI assistant. Your response must begin with two separate "
|
| 33 |
-
"tags: an
|
| 34 |
"Your full response must follow these tags."
|
| 35 |
)
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
CONFIDENCE_THRESHOLD = 30
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def safe_del(self):
|
| 41 |
try:
|
|
@@ -100,34 +103,46 @@ def simulate_recording_delay():
|
|
| 100 |
time.sleep(3)
|
| 101 |
return None
|
| 102 |
|
| 103 |
-
def
|
| 104 |
-
"""
|
| 105 |
-
|
| 106 |
"""
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
#
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
if len(words) > 4 and words[-2:] == words[-4:-2]:
|
| 116 |
-
|
| 117 |
-
return
|
| 118 |
|
| 119 |
def web_search_tool(query: str) -> str:
|
| 120 |
-
time.sleep(1.
|
| 121 |
print(f"Simulating Google Search fallback for: {query}")
|
| 122 |
-
return f"\n\n🌐 **Web Search Results for '{query}':** I
|
| 123 |
|
| 124 |
def check_confidence_and_augment(raw_response_with_tags: str, prompt: str) -> str:
|
| 125 |
-
"""Checks confidence
|
| 126 |
-
|
| 127 |
-
- If explicit [Confidence: N] exists, use it.
|
| 128 |
-
- Otherwise fall back to heuristic based on cleaned response length.
|
| 129 |
-
- Only triggers web search if below CONFIDENCE_THRESHOLD.
|
| 130 |
-
"""
|
| 131 |
confidence_match = re.search(r'\[Confidence:\s*([0-9]{1,3})\]', raw_response_with_tags, flags=re.IGNORECASE)
|
| 132 |
cleaned_response = clean_response_stream(raw_response_with_tags)
|
| 133 |
|
|
@@ -138,33 +153,35 @@ def check_confidence_and_augment(raw_response_with_tags: str, prompt: str) -> st
|
|
| 138 |
except Exception:
|
| 139 |
confidence_score = 0
|
| 140 |
else:
|
| 141 |
-
# heuristic:
|
| 142 |
-
if not cleaned_response or len(cleaned_response
|
| 143 |
-
confidence_score = 10
|
| 144 |
-
else:
|
| 145 |
-
confidence_score = 85
|
| 146 |
|
| 147 |
if confidence_score < CONFIDENCE_THRESHOLD:
|
| 148 |
-
|
|
|
|
| 149 |
search_snippet = web_search_tool(prompt)
|
| 150 |
if "error" in cleaned_response.lower() or confidence_score <= 5:
|
| 151 |
-
final_response = f"I apologize
|
| 152 |
else:
|
| 153 |
-
final_response = f"{cleaned_response}
|
| 154 |
else:
|
| 155 |
final_response = cleaned_response
|
| 156 |
|
|
|
|
|
|
|
| 157 |
return final_response
|
| 158 |
|
| 159 |
def process_image(image_data_or_path: Any, message: str) -> Tuple[str, bool]:
|
| 160 |
-
"""Perform VQA via the image_pipe.
|
| 161 |
|
| 162 |
-
|
|
|
|
|
|
|
| 163 |
"""
|
| 164 |
global image_pipe
|
| 165 |
success = False
|
| 166 |
if image_pipe is None:
|
| 167 |
-
return f"[Image Processing Error: VLM model
|
| 168 |
|
| 169 |
image = None
|
| 170 |
try:
|
|
@@ -172,33 +189,76 @@ def process_image(image_data_or_path: Any, message: str) -> Tuple[str, bool]:
|
|
| 172 |
image = Image.open(image_data_or_path).convert("RGB")
|
| 173 |
elif isinstance(image_data_or_path, np.ndarray):
|
| 174 |
image = Image.fromarray(image_data_or_path).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
prompt_injection = f"**VQA Analysis:** {vqa_response}\n\n**User Query:** {message}"
|
| 194 |
-
return prompt_injection, success
|
| 195 |
|
| 196 |
except Exception as e:
|
| 197 |
-
print(f"Image Pipeline
|
| 198 |
return f"[Image Processing Error: {e}] **User Query:** {message}", success
|
| 199 |
|
| 200 |
-
return f"[Image Processing Error: Could not load image data.] **User Query:** {message}", success
|
| 201 |
-
|
| 202 |
def transcribe_audio(audio_file_path: str) -> Tuple[str, str, gr.update, gr.update, bool, gr.update]:
|
| 203 |
if stt_pipe is None or audio_file_path is None:
|
| 204 |
error_msg = "Error: Whisper model failed to load or no audio recorded."
|
|
@@ -248,29 +308,27 @@ INTENT_STATUS_MAP = {
|
|
| 248 |
}
|
| 249 |
|
| 250 |
def get_intent_status(raw_response: str, is_vqa_flow: bool) -> Tuple[str, str, str]:
|
| 251 |
-
"""Parses intent (
|
| 252 |
-
|
| 253 |
-
|
|
|
|
|
|
|
| 254 |
if is_vqa_flow:
|
| 255 |
intent = "vqa"
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
cleaned_text =
|
| 259 |
-
cleaned_text = clean_response_stream(cleaned_text) # extra clean
|
| 260 |
status = INTENT_STATUS_MAP.get(intent, INTENT_STATUS_MAP["default"])
|
| 261 |
return intent, status, cleaned_text
|
| 262 |
|
| 263 |
def generate_file_content(content: str, history: List[Dict[str, str]], file_type: str):
|
| 264 |
-
"""Generates a file
|
| 265 |
-
|
| 266 |
-
If content is too short or missing, ask the user to clarify instead of producing empty files.
|
| 267 |
-
"""
|
| 268 |
file_path = None
|
| 269 |
try:
|
| 270 |
-
if not content or len(content.strip()) <
|
| 271 |
history[-1]['content'] = (
|
| 272 |
-
f"⚠️ I was
|
| 273 |
-
"
|
| 274 |
)
|
| 275 |
return history, None
|
| 276 |
|
|
@@ -297,7 +355,6 @@ def generate_file_content(content: str, history: List[Dict[str, str]], file_type
|
|
| 297 |
try:
|
| 298 |
slide.placeholders[1].text = content[:200] + "..."
|
| 299 |
except Exception:
|
| 300 |
-
# fallback if layout mismatch
|
| 301 |
pass
|
| 302 |
file_filename = f"generated_ppt_{random.randint(1000, 9999)}.pptx"
|
| 303 |
file_path = os.path.join(DOC_DIR, file_filename)
|
|
@@ -313,22 +370,21 @@ def generate_file_content(content: str, history: List[Dict[str, str]], file_type
|
|
| 313 |
file_path = None
|
| 314 |
return history, file_path
|
| 315 |
|
|
|
|
| 316 |
# --- CORE GENERATOR FUNCTION ---
|
| 317 |
def chat_generator(message_from_input: str, image_input_data: Any, history: List[Dict[str, str]], stop_signal: bool, is_voice_chat: bool) -> Any:
|
| 318 |
"""
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
-
|
| 322 |
-
so there's no empty assistant box created prematurely.
|
| 323 |
"""
|
| 324 |
-
|
| 325 |
-
# Validate that last item is a USER (we expect user_turn to add only the user record)
|
| 326 |
if not history or history[-1]['role'] != 'user':
|
| 327 |
yield history, False, "Error: Generator called in unexpected state (no user message found).", gr.update(interactive=True), gr.update(value="↑", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 328 |
return
|
| 329 |
|
| 330 |
last_user_index = len(history) - 1
|
| 331 |
-
original_message = history[last_user_index]['content']
|
| 332 |
|
| 333 |
# Detect VQA flow
|
| 334 |
is_vqa_flow = False
|
|
@@ -339,36 +395,37 @@ def chat_generator(message_from_input: str, image_input_data: Any, history: List
|
|
| 339 |
else:
|
| 340 |
is_vqa_flow = image_input_data is not None
|
| 341 |
|
| 342 |
-
# Process image if present (returns prompt injection for LLM)
|
| 343 |
vqa_success = False
|
| 344 |
llm_input_message = original_message
|
| 345 |
if is_vqa_flow:
|
| 346 |
processed_message, vqa_success = process_image(image_input_data, original_message)
|
| 347 |
-
#
|
| 348 |
history[last_user_index]['content'] = f"[IMAGE RECEIVED] {original_message}"
|
| 349 |
llm_input_message = processed_message
|
| 350 |
|
| 351 |
-
# Build prompt
|
| 352 |
prompt = f"SYSTEM: {SYSTEM_PROMPT}\n"
|
| 353 |
-
for item in history[:-1]:
|
| 354 |
role = item['role'].upper()
|
| 355 |
-
content = item['content']
|
| 356 |
if role == "ASSISTANT":
|
|
|
|
| 357 |
prompt += f"LUNA: {content}\n"
|
| 358 |
elif role == "USER":
|
| 359 |
prompt += f"USER: {content}\n"
|
| 360 |
prompt += f"USER: {llm_input_message}\nLUNA: "
|
| 361 |
|
| 362 |
-
#
|
| 363 |
assistant_initial_text = "✨ Luna is starting to think..."
|
| 364 |
history.append({"role": "assistant", "content": assistant_initial_text})
|
| 365 |
|
| 366 |
-
# Early UI update
|
| 367 |
yield history, stop_signal, assistant_initial_text, gr.update(value="", interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 368 |
-
time.sleep(0.
|
| 369 |
|
| 370 |
full_response = ""
|
| 371 |
current_intent = "default"
|
|
|
|
| 372 |
|
| 373 |
try:
|
| 374 |
stream = llm.create_completion(
|
|
@@ -378,70 +435,99 @@ def chat_generator(message_from_input: str, image_input_data: Any, history: List
|
|
| 378 |
)
|
| 379 |
except Exception as e:
|
| 380 |
error_text = f"❌ Error generating response: {e}"
|
| 381 |
-
# update assistant with error
|
| 382 |
history[-1]['content'] = error_text
|
| 383 |
yield history, False, error_text, gr.update(interactive=True), gr.update(value="↑", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 384 |
return
|
| 385 |
|
| 386 |
-
# Stream tokens
|
| 387 |
try:
|
| 388 |
for output in stream:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
token = output["choices"][0].get("text", "")
|
|
|
|
|
|
|
| 390 |
full_response += token
|
| 391 |
-
|
| 392 |
-
#
|
| 393 |
-
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
yield history, stop_signal, current_hint, gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
|
|
|
| 396 |
except Exception as e:
|
| 397 |
-
#
|
| 398 |
-
_, _,
|
| 399 |
-
|
| 400 |
-
history[-1]['content'] =
|
| 401 |
-
yield history, False,
|
| 402 |
return
|
| 403 |
|
| 404 |
# POST-PROCESSING & TOOL EXECUTION
|
| 405 |
file_download_path = None
|
| 406 |
_, _, content_for_tool = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
|
|
|
| 407 |
|
| 408 |
-
#
|
| 409 |
if current_intent == "image_generate":
|
| 410 |
-
if not content_for_tool or len(content_for_tool.strip()) <
|
| 411 |
-
history[-1]['content'] = "I detected
|
| 412 |
else:
|
| 413 |
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
|
| 414 |
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 415 |
history, file_download_path = generate_file_content(content_for_tool, history, "image")
|
|
|
|
| 416 |
elif current_intent == "doc_generate":
|
| 417 |
-
if not content_for_tool or len(content_for_tool.strip()) <
|
| 418 |
-
history[-1]['content'] = "I
|
| 419 |
else:
|
| 420 |
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
|
| 421 |
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 422 |
history, file_download_path = generate_file_content(content_for_tool, history, "doc")
|
|
|
|
| 423 |
elif current_intent == "ppt_generate":
|
| 424 |
-
if not content_for_tool or len(content_for_tool.strip()) <
|
| 425 |
-
history[-1]['content'] = "I can make a
|
| 426 |
else:
|
| 427 |
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
|
| 428 |
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 429 |
history, file_download_path = generate_file_content(content_for_tool, history, "ppt")
|
|
|
|
| 430 |
elif current_intent == "open_google":
|
| 431 |
-
final_cleaned_response = content_for_tool + "\n\n🔗 **Action:** [Search Google](https://www.google.com/search?q=open+google+simulated+search)"
|
| 432 |
-
history[-1]['content'] = final_cleaned_response
|
|
|
|
| 433 |
elif current_intent == "open_camera":
|
| 434 |
-
final_cleaned_response = content_for_tool + "\n\n📸 **Action:** Use the 'Google Lens' button to capture an image."
|
| 435 |
-
history[-1]['content'] = final_cleaned_response
|
|
|
|
| 436 |
else:
|
| 437 |
-
#
|
| 438 |
final_response_content = check_confidence_and_augment(full_response, original_message)
|
| 439 |
history[-1]['content'] = final_response_content
|
| 440 |
|
| 441 |
-
#
|
| 442 |
if not history[-1]['content'] or not str(history[-1]['content']).strip():
|
| 443 |
history[-1]['content'] = "Sorry — I couldn't produce a good response. Can you rephrase or give more details?"
|
| 444 |
|
|
|
|
| 445 |
audio_file_path = text_to_audio(history[-1]['content'], is_voice_chat)
|
| 446 |
|
| 447 |
hint = "✅ Response generated."
|
|
@@ -456,9 +542,8 @@ def toggle_menu(current_visibility: bool) -> Tuple[bool, gr.update, gr.update, g
|
|
| 456 |
|
| 457 |
def user_turn(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]]]:
|
| 458 |
"""
|
| 459 |
-
Appends only the USER message to chat_history.
|
| 460 |
-
|
| 461 |
-
The assistant will be appended inside chat_generator when generation begins.
|
| 462 |
"""
|
| 463 |
has_text = bool(user_message and user_message.strip())
|
| 464 |
has_image = False
|
|
@@ -472,17 +557,13 @@ def user_turn(user_message: str, chat_history: List[Dict[str, str]], staged_imag
|
|
| 472 |
if not has_text and not has_image:
|
| 473 |
return user_message, chat_history
|
| 474 |
|
| 475 |
-
# Prevent double-
|
| 476 |
if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] and "thinking" in chat_history[-1]['content'].lower():
|
| 477 |
return user_message, chat_history
|
| 478 |
|
| 479 |
-
if not has_text and has_image
|
| 480 |
-
user_message_to_add = "Analyzing Staged Media."
|
| 481 |
-
else:
|
| 482 |
-
user_message_to_add = user_message.strip()
|
| 483 |
-
|
| 484 |
chat_history.append({"role": "user", "content": user_message_to_add})
|
| 485 |
-
#
|
| 486 |
return "", chat_history
|
| 487 |
|
| 488 |
def stage_file_upload(file_path: str) -> Tuple[Any, str, gr.update, gr.update]:
|
|
@@ -491,7 +572,6 @@ def stage_file_upload(file_path: str) -> Tuple[Any, str, gr.update, gr.update]:
|
|
| 491 |
return None, "File upload cancelled.", gr.update(value="", interactive=True), gr.update(interactive=False)
|
| 492 |
|
| 493 |
def clear_staged_media() -> gr.update:
|
| 494 |
-
"""Clears the staged media state component."""
|
| 495 |
return gr.update(value=None)
|
| 496 |
|
| 497 |
def manual_fact_check(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str, gr.update]:
|
|
@@ -517,10 +597,7 @@ def auto_capture_camera(user_message: str, chat_history: List[Dict[str, str]], s
|
|
| 517 |
|
| 518 |
|
| 519 |
# --- GRADIO INTERFACE ---
|
| 520 |
-
|
| 521 |
with gr.Blocks(theme=gr.themes.Soft(), title="Luna Coding Partner") as demo:
|
| 522 |
-
|
| 523 |
-
# --- State Components ---
|
| 524 |
stop_signal = gr.State(value=False)
|
| 525 |
is_voice_chat = gr.State(value=False)
|
| 526 |
staged_image = gr.State(value=None)
|
|
@@ -558,7 +635,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Luna Coding Partner") as demo:
|
|
| 558 |
|
| 559 |
output_components = [chatbot, stop_signal, hint_box, txt, combined_btn, audio_output, is_voice_chat, fact_check_btn_row, staged_image, file_input, file_download_output]
|
| 560 |
|
| 561 |
-
# ---
|
| 562 |
btn_menu.click(
|
| 563 |
fn=toggle_menu, inputs=[menu_visible_state], outputs=[menu_visible_state, menu_options_row, fact_check_btn_row, btn_menu], queue=False
|
| 564 |
)
|
|
@@ -600,7 +677,6 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Luna Coding Partner") as demo:
|
|
| 600 |
|
| 601 |
generator_inputs = [txt, staged_image, chatbot, stop_signal, is_voice_chat]
|
| 602 |
|
| 603 |
-
# Text submit (Enter key)
|
| 604 |
txt.submit(
|
| 605 |
fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
|
| 606 |
).then(
|
|
@@ -609,7 +685,6 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Luna Coding Partner") as demo:
|
|
| 609 |
fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
|
| 610 |
)
|
| 611 |
|
| 612 |
-
# Send button click
|
| 613 |
combined_btn.click(
|
| 614 |
fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
|
| 615 |
).then(
|
|
|
|
| 14 |
from docx import Document
|
| 15 |
from pptx import Presentation
|
| 16 |
from io import BytesIO
|
| 17 |
+
import numpy as np
|
| 18 |
|
| 19 |
# --- CONFIGURATION & INITIALIZATION ---
|
| 20 |
STT_DEVICE = "cpu"
|
|
|
|
| 30 |
LOCAL_MODEL_PATH = MODEL_FILE
|
| 31 |
SYSTEM_PROMPT = (
|
| 32 |
"You are Luna, a helpful and friendly AI assistant. Your response must begin with two separate "
|
| 33 |
+
"tags: an Intent tag and a Confidence tag (0-100). Example: '[Intent: qa_general][Confidence: 85]'. "
|
| 34 |
"Your full response must follow these tags."
|
| 35 |
)
|
| 36 |
|
| 37 |
+
# --- TUNABLES / GUARDS ---
|
| 38 |
+
CONFIDENCE_THRESHOLD = 30 # only trigger web-search fallback if confidence is less than this
|
| 39 |
+
STREAM_CHAR_LIMIT = 35000 # hard cap on streaming response size (prevents runaway)
|
| 40 |
+
STREAM_ITER_LIMIT = 20000 # hard cap on streaming token iterations
|
| 41 |
+
MIN_MEANINGFUL_LENGTH = 20 # used when determining if a tool prompt is sufficient
|
| 42 |
|
| 43 |
def safe_del(self):
|
| 44 |
try:
|
|
|
|
| 103 |
time.sleep(3)
|
| 104 |
return None
|
| 105 |
|
| 106 |
+
def remove_all_tags(text: str) -> str:
|
| 107 |
+
"""Remove ALL bracketed Intent/Confidence tags and any plain 'Intent:' or 'Confidence:' lines.
|
| 108 |
+
This ensures tags never leak into the UI.
|
| 109 |
"""
|
| 110 |
+
if not text:
|
| 111 |
+
return ""
|
| 112 |
+
# remove bracketed tags like [Intent: xyz] [Confidence: 85]
|
| 113 |
+
text = re.sub(r'\[Intent:\s*[\w\-\_]+\]', '', text, flags=re.IGNORECASE)
|
| 114 |
+
text = re.sub(r'\[Confidence:\s*\d{1,3}\]', '', text, flags=re.IGNORECASE)
|
| 115 |
+
# remove any lines that start with "Intent:" or "Confidence:" (plain text)
|
| 116 |
+
text = re.sub(r'(?im)^\s*Intent:\s*.*$', '', text)
|
| 117 |
+
text = re.sub(r'(?im)^\s*Confidence:\s*.*$', '', text)
|
| 118 |
+
# collapse multiple blank lines
|
| 119 |
+
text = re.sub(r'\n\s*\n+', '\n\n', text).strip()
|
| 120 |
+
return text
|
| 121 |
+
|
| 122 |
+
def clean_response_stream(raw_text: str) -> str:
|
| 123 |
+
"""Cleans up raw response text and removes any tag artifacts (safe for UI)."""
|
| 124 |
+
if not raw_text:
|
| 125 |
+
return ""
|
| 126 |
+
# Trim at common model separators to avoid carrying lots of leftover prompt text
|
| 127 |
+
truncated = re.split(r'\nUser:|\nAssistant:|</s>', raw_text, 1)[0].strip()
|
| 128 |
+
# Remove instruction tokens
|
| 129 |
+
truncated = re.sub(r'\[/?INST\]|\[/?s\]|\s*<action>.*?</action>\s*', '', truncated, flags=re.DOTALL).strip()
|
| 130 |
+
# Remove any explicit tags and any plain lines referencing Intent/Confidence
|
| 131 |
+
truncated = remove_all_tags(truncated)
|
| 132 |
+
# Deduplicate trivial repeated endings
|
| 133 |
+
words = truncated.split()
|
| 134 |
if len(words) > 4 and words[-2:] == words[-4:-2]:
|
| 135 |
+
truncated = ' '.join(words[:-2])
|
| 136 |
+
return truncated.strip()
|
| 137 |
|
| 138 |
def web_search_tool(query: str) -> str:
|
| 139 |
+
time.sleep(1.2)
|
| 140 |
print(f"Simulating Google Search fallback for: {query}")
|
| 141 |
+
return f"\n\n🌐 **Web Search Results for '{query}':** I found supplemental info to help answer this."
|
| 142 |
|
| 143 |
def check_confidence_and_augment(raw_response_with_tags: str, prompt: str) -> str:
|
| 144 |
+
"""Checks confidence and optionally augments via web search. This function never returns raw tags."""
|
| 145 |
+
# Find only the first confidence occurrence (if any)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
confidence_match = re.search(r'\[Confidence:\s*([0-9]{1,3})\]', raw_response_with_tags, flags=re.IGNORECASE)
|
| 147 |
cleaned_response = clean_response_stream(raw_response_with_tags)
|
| 148 |
|
|
|
|
| 153 |
except Exception:
|
| 154 |
confidence_score = 0
|
| 155 |
else:
|
| 156 |
+
# heuristic: if the cleaned response is short or empty, regard as low confidence
|
| 157 |
+
confidence_score = 10 if not cleaned_response or len(cleaned_response) < 30 else 85
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
if confidence_score < CONFIDENCE_THRESHOLD:
|
| 160 |
+
# very low confidence -> append search snippet
|
| 161 |
+
print(f"Low confidence ({confidence_score}%) detected (threshold={CONFIDENCE_THRESHOLD}). Using web fallback.")
|
| 162 |
search_snippet = web_search_tool(prompt)
|
| 163 |
if "error" in cleaned_response.lower() or confidence_score <= 5:
|
| 164 |
+
final_response = f"I apologize — I couldn't produce a reliable answer (Confidence: {confidence_score}%). {search_snippet}"
|
| 165 |
else:
|
| 166 |
+
final_response = f"{cleaned_response}\n\n{search_snippet}\n\nIf you'd like, I can attempt a deeper search or try again."
|
| 167 |
else:
|
| 168 |
final_response = cleaned_response
|
| 169 |
|
| 170 |
+
# Ensure final_response contains no tags
|
| 171 |
+
final_response = remove_all_tags(final_response)
|
| 172 |
return final_response
|
| 173 |
|
| 174 |
def process_image(image_data_or_path: Any, message: str) -> Tuple[str, bool]:
|
| 175 |
+
"""Perform VQA via the image_pipe. Robust to different pipeline return types.
|
| 176 |
|
| 177 |
+
Returns:
|
| 178 |
+
- prompt_injection: text to include in LLM prompt describing the VQA output or error guidance
|
| 179 |
+
- success: whether the VLM produced a clear answer
|
| 180 |
"""
|
| 181 |
global image_pipe
|
| 182 |
success = False
|
| 183 |
if image_pipe is None:
|
| 184 |
+
return f"[Image Processing Error: VLM model not loaded.] **User Query:** {message}", success
|
| 185 |
|
| 186 |
image = None
|
| 187 |
try:
|
|
|
|
| 189 |
image = Image.open(image_data_or_path).convert("RGB")
|
| 190 |
elif isinstance(image_data_or_path, np.ndarray):
|
| 191 |
image = Image.fromarray(image_data_or_path).convert("RGB")
|
| 192 |
+
else:
|
| 193 |
+
# Unknown image container (e.g., bytes)
|
| 194 |
+
try:
|
| 195 |
+
image = Image.open(BytesIO(image_data_or_path)).convert("RGB")
|
| 196 |
+
except Exception:
|
| 197 |
+
image = None
|
| 198 |
+
|
| 199 |
+
if image is None:
|
| 200 |
+
return f"[Image Processing Error: Could not open image.] **User Query:** {message}", success
|
| 201 |
+
|
| 202 |
+
vqa_prompt = f"USER: <image>\n{message}\nASSISTANT:"
|
| 203 |
+
# Some pipelines accept (image, prompt=...), some accept kwargs. Try both patterns and be defensive.
|
| 204 |
+
results = None
|
| 205 |
+
try:
|
| 206 |
+
results = image_pipe(image, prompt=vqa_prompt)
|
| 207 |
+
except TypeError:
|
| 208 |
+
# fallback signature
|
| 209 |
+
try:
|
| 210 |
+
results = image_pipe(image)
|
| 211 |
+
except Exception as e:
|
| 212 |
+
print(f"Image pipeline call failed: {e}")
|
| 213 |
+
results = None
|
| 214 |
+
except Exception as e:
|
| 215 |
+
print(f"Image pipeline call error: {e}")
|
| 216 |
+
results = None
|
| 217 |
+
|
| 218 |
+
raw_vlm_output = ""
|
| 219 |
+
if results is None:
|
| 220 |
+
raw_vlm_output = ""
|
| 221 |
+
elif isinstance(results, dict):
|
| 222 |
+
# some pipelines return dict with 'generated_text' or 'text'
|
| 223 |
+
raw_vlm_output = results.get('generated_text') or results.get('text') or ""
|
| 224 |
+
elif isinstance(results, list):
|
| 225 |
+
# list of dicts or strings
|
| 226 |
+
first = results[0]
|
| 227 |
+
if isinstance(first, dict):
|
| 228 |
+
raw_vlm_output = first.get('generated_text') or first.get('text') or ""
|
| 229 |
+
elif isinstance(first, str):
|
| 230 |
+
raw_vlm_output = first
|
| 231 |
+
elif isinstance(results, str):
|
| 232 |
+
raw_vlm_output = results
|
| 233 |
+
else:
|
| 234 |
+
# unknown shape -> convert to string safe
|
| 235 |
+
try:
|
| 236 |
+
raw_vlm_output = str(results)
|
| 237 |
+
except Exception:
|
| 238 |
+
raw_vlm_output = ""
|
| 239 |
|
| 240 |
+
# extract assistant part
|
| 241 |
+
vqa_response = raw_vlm_output.split("ASSISTANT:")[-1].strip() if raw_vlm_output else ""
|
| 242 |
+
|
| 243 |
+
# If no meaningful vqa_response, return a helpful fallback message
|
| 244 |
+
if not vqa_response or len(vqa_response) < 10:
|
| 245 |
+
vqa_response = (
|
| 246 |
+
"VQA analysis did not return a clear answer. The image might be unclear or the request ambiguous. "
|
| 247 |
+
"Please try re-uploading a clearer image, crop to the subject, or add a short instruction about what you'd like answered."
|
| 248 |
+
)
|
| 249 |
+
success = False
|
| 250 |
+
else:
|
| 251 |
+
success = True
|
| 252 |
+
|
| 253 |
+
# Always remove any tags to prevent leaking
|
| 254 |
+
vqa_response = remove_all_tags(vqa_response)
|
| 255 |
+
prompt_injection = f"**VQA Analysis:** {vqa_response}\n\n**User Query:** {message}"
|
| 256 |
+
return prompt_injection, success
|
|
|
|
|
|
|
| 257 |
|
| 258 |
except Exception as e:
|
| 259 |
+
print(f"Image Pipeline Exception: {e}")
|
| 260 |
return f"[Image Processing Error: {e}] **User Query:** {message}", success
|
| 261 |
|
|
|
|
|
|
|
| 262 |
def transcribe_audio(audio_file_path: str) -> Tuple[str, str, gr.update, gr.update, bool, gr.update]:
|
| 263 |
if stt_pipe is None or audio_file_path is None:
|
| 264 |
error_msg = "Error: Whisper model failed to load or no audio recorded."
|
|
|
|
| 308 |
}
|
| 309 |
|
| 310 |
def get_intent_status(raw_response: str, is_vqa_flow: bool) -> Tuple[str, str, str]:
|
| 311 |
+
"""Parses intent (first occurrence only) and returns (intent, status, cleaned_display_text).
|
| 312 |
+
Importantly: this DOES NOT expose any tags — we remove them for display.
|
| 313 |
+
"""
|
| 314 |
+
intent_match = re.search(r'\[Intent:\s*([\w\-\_]+)\]', raw_response, re.IGNORECASE)
|
| 315 |
+
intent = intent_match.group(1).lower() if intent_match else "default"
|
| 316 |
if is_vqa_flow:
|
| 317 |
intent = "vqa"
|
| 318 |
+
|
| 319 |
+
# Clean raw_response for display: remove all tags and noisy prompt leftovers
|
| 320 |
+
cleaned_text = clean_response_stream(raw_response)
|
|
|
|
| 321 |
status = INTENT_STATUS_MAP.get(intent, INTENT_STATUS_MAP["default"])
|
| 322 |
return intent, status, cleaned_text
|
| 323 |
|
| 324 |
def generate_file_content(content: str, history: List[Dict[str, str]], file_type: str):
|
| 325 |
+
"""Generates a file and writes it to disk. If content insufficient, asks for clarification."""
|
|
|
|
|
|
|
|
|
|
| 326 |
file_path = None
|
| 327 |
try:
|
| 328 |
+
if not content or len(content.strip()) < MIN_MEANINGFUL_LENGTH:
|
| 329 |
history[-1]['content'] = (
|
| 330 |
+
f"⚠️ I was asked to create a {file_type}, but I don't have enough details. "
|
| 331 |
+
"Please provide a 1–2 sentence description of what the file should contain."
|
| 332 |
)
|
| 333 |
return history, None
|
| 334 |
|
|
|
|
| 355 |
try:
|
| 356 |
slide.placeholders[1].text = content[:200] + "..."
|
| 357 |
except Exception:
|
|
|
|
| 358 |
pass
|
| 359 |
file_filename = f"generated_ppt_{random.randint(1000, 9999)}.pptx"
|
| 360 |
file_path = os.path.join(DOC_DIR, file_filename)
|
|
|
|
| 370 |
file_path = None
|
| 371 |
return history, file_path
|
| 372 |
|
| 373 |
+
|
| 374 |
# --- CORE GENERATOR FUNCTION ---
|
| 375 |
def chat_generator(message_from_input: str, image_input_data: Any, history: List[Dict[str, str]], stop_signal: bool, is_voice_chat: bool) -> Any:
|
| 376 |
"""
|
| 377 |
+
- Assistant entry is appended ONLY when generation begins (avoids empty assistant box).
|
| 378 |
+
- Strict caps on streaming to avoid infinite printing.
|
| 379 |
+
- Strict removal of tags before any content is written to history for UI.
|
|
|
|
| 380 |
"""
|
| 381 |
+
# Validate last item is user's message
|
|
|
|
| 382 |
if not history or history[-1]['role'] != 'user':
|
| 383 |
yield history, False, "Error: Generator called in unexpected state (no user message found).", gr.update(interactive=True), gr.update(value="↑", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 384 |
return
|
| 385 |
|
| 386 |
last_user_index = len(history) - 1
|
| 387 |
+
original_message = history[last_user_index]['content'] or ""
|
| 388 |
|
| 389 |
# Detect VQA flow
|
| 390 |
is_vqa_flow = False
|
|
|
|
| 395 |
else:
|
| 396 |
is_vqa_flow = image_input_data is not None
|
| 397 |
|
|
|
|
| 398 |
vqa_success = False
|
| 399 |
llm_input_message = original_message
|
| 400 |
if is_vqa_flow:
|
| 401 |
processed_message, vqa_success = process_image(image_input_data, original_message)
|
| 402 |
+
# mark user's entry (but keep original message around)
|
| 403 |
history[last_user_index]['content'] = f"[IMAGE RECEIVED] {original_message}"
|
| 404 |
llm_input_message = processed_message
|
| 405 |
|
| 406 |
+
# Build prompt
|
| 407 |
prompt = f"SYSTEM: {SYSTEM_PROMPT}\n"
|
| 408 |
+
for item in history[:-1]:
|
| 409 |
role = item['role'].upper()
|
| 410 |
+
content = item['content'] or ""
|
| 411 |
if role == "ASSISTANT":
|
| 412 |
+
# ensure assistant content used in prompt still includes tags if model expects them (we don't alter)
|
| 413 |
prompt += f"LUNA: {content}\n"
|
| 414 |
elif role == "USER":
|
| 415 |
prompt += f"USER: {content}\n"
|
| 416 |
prompt += f"USER: {llm_input_message}\nLUNA: "
|
| 417 |
|
| 418 |
+
# Add assistant entry now (so it appears only when generation starts)
|
| 419 |
assistant_initial_text = "✨ Luna is starting to think..."
|
| 420 |
history.append({"role": "assistant", "content": assistant_initial_text})
|
| 421 |
|
| 422 |
+
# Early UI update: show thinking state
|
| 423 |
yield history, stop_signal, assistant_initial_text, gr.update(value="", interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 424 |
+
time.sleep(0.15)
|
| 425 |
|
| 426 |
full_response = ""
|
| 427 |
current_intent = "default"
|
| 428 |
+
iter_count = 0
|
| 429 |
|
| 430 |
try:
|
| 431 |
stream = llm.create_completion(
|
|
|
|
| 435 |
)
|
| 436 |
except Exception as e:
|
| 437 |
error_text = f"❌ Error generating response: {e}"
|
|
|
|
| 438 |
history[-1]['content'] = error_text
|
| 439 |
yield history, False, error_text, gr.update(interactive=True), gr.update(value="↑", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 440 |
return
|
| 441 |
|
| 442 |
+
# Stream tokens with strict caps and tag-removal for UI
|
| 443 |
try:
|
| 444 |
for output in stream:
|
| 445 |
+
iter_count += 1
|
| 446 |
+
if iter_count > STREAM_ITER_LIMIT:
|
| 447 |
+
# safety abort
|
| 448 |
+
full_response += "\n\n[Stream stopped: reached iteration limit]"
|
| 449 |
+
print("Stream aborted: iteration limit reached.")
|
| 450 |
+
break
|
| 451 |
+
|
| 452 |
token = output["choices"][0].get("text", "")
|
| 453 |
+
if not isinstance(token, str):
|
| 454 |
+
token = str(token)
|
| 455 |
full_response += token
|
| 456 |
+
|
| 457 |
+
# safety cap on characters to prevent runaway printing
|
| 458 |
+
if len(full_response) > STREAM_CHAR_LIMIT:
|
| 459 |
+
full_response = full_response[:STREAM_CHAR_LIMIT] + "\n\n[Truncated: stream length limit reached]"
|
| 460 |
+
print("Stream truncated: char limit reached.")
|
| 461 |
+
break
|
| 462 |
+
|
| 463 |
+
# parse intent/status and cleaned display without exposing tags
|
| 464 |
+
current_intent, current_hint, cleaned_display = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
| 465 |
+
|
| 466 |
+
# enforce tag-suppression: cleaned_display MUST NOT contain tag patterns
|
| 467 |
+
cleaned_display = remove_all_tags(cleaned_display)
|
| 468 |
+
# guarantee non-empty display while streaming
|
| 469 |
+
if not cleaned_display.strip():
|
| 470 |
+
cleaned_display = "✨ Luna is forming a reply..."
|
| 471 |
+
history[-1]['content'] = cleaned_display
|
| 472 |
+
|
| 473 |
yield history, stop_signal, current_hint, gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 474 |
+
|
| 475 |
except Exception as e:
|
| 476 |
+
# On exception, salvage partial output
|
| 477 |
+
_, _, final_clean = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
| 478 |
+
final_clean = remove_all_tags(final_clean) or f"⚠️ Streaming interrupted: {e}"
|
| 479 |
+
history[-1]['content'] = final_clean
|
| 480 |
+
yield history, False, f"⚠️ Streaming interrupted: {e}", gr.update(interactive=True), gr.update(value="↑", interactive=True), None, False, gr.update(visible=True), image_input_data, gr.update(), gr.update()
|
| 481 |
return
|
| 482 |
|
| 483 |
# POST-PROCESSING & TOOL EXECUTION
|
| 484 |
file_download_path = None
|
| 485 |
_, _, content_for_tool = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
| 486 |
+
content_for_tool = remove_all_tags(content_for_tool) # ensure no tags in tool prompts
|
| 487 |
|
| 488 |
+
# Handle tool intents, but require sufficient content; otherwise ask for clarification
|
| 489 |
if current_intent == "image_generate":
|
| 490 |
+
if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
|
| 491 |
+
history[-1]['content'] = "I detected an image generation intent but didn't get enough details. Please give a short prompt (e.g. 'a red bicycle in a park at sunrise')."
|
| 492 |
else:
|
| 493 |
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
|
| 494 |
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 495 |
history, file_download_path = generate_file_content(content_for_tool, history, "image")
|
| 496 |
+
|
| 497 |
elif current_intent == "doc_generate":
|
| 498 |
+
if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
|
| 499 |
+
history[-1]['content'] = "I can create a document, but I need a 1–2 sentence description of what to include."
|
| 500 |
else:
|
| 501 |
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
|
| 502 |
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 503 |
history, file_download_path = generate_file_content(content_for_tool, history, "doc")
|
| 504 |
+
|
| 505 |
elif current_intent == "ppt_generate":
|
| 506 |
+
if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
|
| 507 |
+
history[-1]['content'] = "I can make a presentation — please give a title and 3–5 bullet points."
|
| 508 |
else:
|
| 509 |
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
|
| 510 |
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 511 |
history, file_download_path = generate_file_content(content_for_tool, history, "ppt")
|
| 512 |
+
|
| 513 |
elif current_intent == "open_google":
|
| 514 |
+
final_cleaned_response = (content_for_tool or "").strip() + "\n\n🔗 **Action:** [Search Google](https://www.google.com/search?q=open+google+simulated+search)"
|
| 515 |
+
history[-1]['content'] = remove_all_tags(final_cleaned_response)
|
| 516 |
+
|
| 517 |
elif current_intent == "open_camera":
|
| 518 |
+
final_cleaned_response = (content_for_tool or "").strip() + "\n\n📸 **Action:** Use the 'Google Lens' button to capture an image."
|
| 519 |
+
history[-1]['content'] = remove_all_tags(final_cleaned_response)
|
| 520 |
+
|
| 521 |
else:
|
| 522 |
+
# default path: evaluate confidence and optionally augment with web search
|
| 523 |
final_response_content = check_confidence_and_augment(full_response, original_message)
|
| 524 |
history[-1]['content'] = final_response_content
|
| 525 |
|
| 526 |
+
# Final defensive fallback
|
| 527 |
if not history[-1]['content'] or not str(history[-1]['content']).strip():
|
| 528 |
history[-1]['content'] = "Sorry — I couldn't produce a good response. Can you rephrase or give more details?"
|
| 529 |
|
| 530 |
+
# convert to audio if requested
|
| 531 |
audio_file_path = text_to_audio(history[-1]['content'], is_voice_chat)
|
| 532 |
|
| 533 |
hint = "✅ Response generated."
|
|
|
|
| 542 |
|
| 543 |
def user_turn(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]]]:
|
| 544 |
"""
|
| 545 |
+
Appends only the USER message to chat_history. Assistant entry is appended inside chat_generator
|
| 546 |
+
once generation starts (avoids empty assistant box).
|
|
|
|
| 547 |
"""
|
| 548 |
has_text = bool(user_message and user_message.strip())
|
| 549 |
has_image = False
|
|
|
|
| 557 |
if not has_text and not has_image:
|
| 558 |
return user_message, chat_history
|
| 559 |
|
| 560 |
+
# Prevent double-send if assistant already generating
|
| 561 |
if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] and "thinking" in chat_history[-1]['content'].lower():
|
| 562 |
return user_message, chat_history
|
| 563 |
|
| 564 |
+
user_message_to_add = "Analyzing Staged Media." if (not has_text and has_image) else user_message.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 565 |
chat_history.append({"role": "user", "content": user_message_to_add})
|
| 566 |
+
# DO NOT append assistant here
|
| 567 |
return "", chat_history
|
| 568 |
|
| 569 |
def stage_file_upload(file_path: str) -> Tuple[Any, str, gr.update, gr.update]:
|
|
|
|
| 572 |
return None, "File upload cancelled.", gr.update(value="", interactive=True), gr.update(interactive=False)
|
| 573 |
|
| 574 |
def clear_staged_media() -> gr.update:
|
|
|
|
| 575 |
return gr.update(value=None)
|
| 576 |
|
| 577 |
def manual_fact_check(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str, gr.update]:
|
|
|
|
| 597 |
|
| 598 |
|
| 599 |
# --- GRADIO INTERFACE ---
|
|
|
|
| 600 |
with gr.Blocks(theme=gr.themes.Soft(), title="Luna Coding Partner") as demo:
|
|
|
|
|
|
|
| 601 |
stop_signal = gr.State(value=False)
|
| 602 |
is_voice_chat = gr.State(value=False)
|
| 603 |
staged_image = gr.State(value=None)
|
|
|
|
| 635 |
|
| 636 |
output_components = [chatbot, stop_signal, hint_box, txt, combined_btn, audio_output, is_voice_chat, fact_check_btn_row, staged_image, file_input, file_download_output]
|
| 637 |
|
| 638 |
+
# --- WIRING ---
|
| 639 |
btn_menu.click(
|
| 640 |
fn=toggle_menu, inputs=[menu_visible_state], outputs=[menu_visible_state, menu_options_row, fact_check_btn_row, btn_menu], queue=False
|
| 641 |
)
|
|
|
|
| 677 |
|
| 678 |
generator_inputs = [txt, staged_image, chatbot, stop_signal, is_voice_chat]
|
| 679 |
|
|
|
|
| 680 |
txt.submit(
|
| 681 |
fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
|
| 682 |
).then(
|
|
|
|
| 685 |
fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
|
| 686 |
)
|
| 687 |
|
|
|
|
| 688 |
combined_btn.click(
|
| 689 |
fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
|
| 690 |
).then(
|