Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- mcp_use.py +105 -0
mcp_use.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), 'relation-extraction-master'))
|
| 4 |
+
import re
|
| 5 |
+
import torch
|
| 6 |
+
from gqlalchemy import Memgraph
|
| 7 |
+
from relation_extraction.hparams import hparams
|
| 8 |
+
from relation_extraction.model import SentenceRE
|
| 9 |
+
from relation_extraction.data_utils import MyTokenizer, get_idx2tag, convert_pos_to_mask
|
| 10 |
+
|
| 11 |
+
# 云端Memgraph连接参数
|
| 12 |
+
MEMGRAPH_HOST = '18.159.132.161'
|
| 13 |
+
MEMGRAPH_PORT = 7687
|
| 14 |
+
MEMGRAPH_USERNAME = '[email protected]'
|
| 15 |
+
MEMGRAPH_PASSWORD = '159951Tjk.' # 请替换为你的真实密码
|
| 16 |
+
MEMGRAPH_ENCRYPTED = True
|
| 17 |
+
|
| 18 |
+
# 连接memgraph云数据库
|
| 19 |
+
def get_memgraph_conn():
|
| 20 |
+
return Memgraph(
|
| 21 |
+
MEMGRAPH_HOST,
|
| 22 |
+
MEMGRAPH_PORT,
|
| 23 |
+
MEMGRAPH_USERNAME,
|
| 24 |
+
MEMGRAPH_PASSWORD,
|
| 25 |
+
encrypted=MEMGRAPH_ENCRYPTED
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# 单句预测,返回三元组
|
| 29 |
+
class RelationPredictor:
|
| 30 |
+
def __init__(self, hparams):
|
| 31 |
+
self.device = hparams.device
|
| 32 |
+
torch.manual_seed(hparams.seed)
|
| 33 |
+
self.idx2tag = get_idx2tag(hparams.tagset_file)
|
| 34 |
+
hparams.tagset_size = len(self.idx2tag)
|
| 35 |
+
self.model = SentenceRE(hparams).to(self.device)
|
| 36 |
+
self.model.load_state_dict(torch.load(hparams.model_file))
|
| 37 |
+
self.model.eval()
|
| 38 |
+
self.tokenizer = MyTokenizer(hparams.pretrained_model_path)
|
| 39 |
+
|
| 40 |
+
def predict_one(self, text, entity1, entity2):
|
| 41 |
+
match_obj1 = re.search(entity1, text)
|
| 42 |
+
match_obj2 = re.search(entity2, text)
|
| 43 |
+
if not (match_obj1 and match_obj2):
|
| 44 |
+
return None
|
| 45 |
+
e1_pos = match_obj1.span()
|
| 46 |
+
e2_pos = match_obj2.span()
|
| 47 |
+
item = {
|
| 48 |
+
'h': {'name': entity1, 'pos': e1_pos},
|
| 49 |
+
't': {'name': entity2, 'pos': e2_pos},
|
| 50 |
+
'text': text
|
| 51 |
+
}
|
| 52 |
+
tokens, pos_e1, pos_e2 = self.tokenizer.tokenize(item)
|
| 53 |
+
encoded = self.tokenizer.bert_tokenizer.batch_encode_plus([(tokens, None)], return_tensors='pt')
|
| 54 |
+
input_ids = encoded['input_ids'].to(self.device)
|
| 55 |
+
token_type_ids = encoded['token_type_ids'].to(self.device)
|
| 56 |
+
attention_mask = encoded['attention_mask'].to(self.device)
|
| 57 |
+
e1_mask = torch.tensor([convert_pos_to_mask(pos_e1, max_len=attention_mask.shape[1])]).to(self.device)
|
| 58 |
+
e2_mask = torch.tensor([convert_pos_to_mask(pos_e2, max_len=attention_mask.shape[1])]).to(self.device)
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
logits = self.model(input_ids, token_type_ids, attention_mask, e1_mask, e2_mask)[0]
|
| 61 |
+
logits = logits.to(torch.device('cpu'))
|
| 62 |
+
relation = self.idx2tag[logits.argmax(0).item()]
|
| 63 |
+
return entity1, relation, entity2
|
| 64 |
+
|
| 65 |
+
# 写入memgraph
|
| 66 |
+
def insert_to_memgraph(memgraph, entity1, relation, entity2):
|
| 67 |
+
memgraph.execute(
|
| 68 |
+
"MERGE (a:Entity {name: $name1})",
|
| 69 |
+
{"name1": entity1}
|
| 70 |
+
)
|
| 71 |
+
memgraph.execute(
|
| 72 |
+
"MERGE (b:Entity {name: $name2})",
|
| 73 |
+
{"name2": entity2}
|
| 74 |
+
)
|
| 75 |
+
memgraph.execute(
|
| 76 |
+
f"MATCH (a:Entity {{name: $name1}}), (b:Entity {{name: $name2}}) MERGE (a)-[:{relation}]->(b)",
|
| 77 |
+
{"name1": entity1, "name2": entity2}
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# 主流程
|
| 81 |
+
|
| 82 |
+
def main():
|
| 83 |
+
memgraph = get_memgraph_conn()
|
| 84 |
+
predictor = RelationPredictor(hparams)
|
| 85 |
+
print("请输入句子和两个实体,识别关系并写入Memgraph。输入exit退出。")
|
| 86 |
+
while True:
|
| 87 |
+
text = input("输入中文句子:")
|
| 88 |
+
if text.strip().lower() == 'exit':
|
| 89 |
+
break
|
| 90 |
+
entity1 = input("句子中的实体1:")
|
| 91 |
+
if entity1.strip().lower() == 'exit':
|
| 92 |
+
break
|
| 93 |
+
entity2 = input("句子中的实体2:")
|
| 94 |
+
if entity2.strip().lower() == 'exit':
|
| 95 |
+
break
|
| 96 |
+
result = predictor.predict_one(text, entity1, entity2)
|
| 97 |
+
if result is None:
|
| 98 |
+
print("实体未在句子中找到,请重试。")
|
| 99 |
+
continue
|
| 100 |
+
entity1, relation, entity2 = result
|
| 101 |
+
insert_to_memgraph(memgraph, entity1, relation, entity2)
|
| 102 |
+
print(f"已写入Memgraph:({entity1})-[:{relation}]->({entity2})")
|
| 103 |
+
|
| 104 |
+
if __name__ == '__main__':
|
| 105 |
+
main()
|