GazeGenie / create_interest_areas_from_image.py
hugpv's picture
added tesseract checks and debian install
5f3a1bb
raw
history blame
12.1 kB
from PIL import Image, ImageDraw
import pandas as pd
import io
import csv
import os
from pathlib import Path
if os.environ.get('TESSDATA_PREFIX') is None and os.name == 'nt':
tessdata_prefix = 'C:/Program Files/Tesseract-OCR/tessdata/'
if Path(tessdata_prefix).exists():
os.environ['TESSDATA_PREFIX'] = 'C:/Program Files/Tesseract-OCR/tessdata/'
else:
tessdata_prefix = None
if os.environ.get('TESSDATA_PREFIX') is None and os.name != 'nt':
tessdata_prefix = '/usr/share/tesseract-ocr/4.00/tessdata'
if Path(tessdata_prefix).exists():
os.environ['TESSDATA_PREFIX'] = '/usr/share/tesseract-ocr/4.00/tessdata'
else:
tessdata_prefix = None
import pytesseract
if os.name == 'nt':
if Path(r'c:/Program Files/Tesseract-OCR/tesseract.exe').exists():
pytesseract.pytesseract.tesseract_cmd = r'c:/Program Files/Tesseract-OCR/tesseract.exe'
else:
if Path(r'/usr/bin/tesseract').exists():
pytesseract.pytesseract.tesseract_cmd =r'/usr/bin/tesseract'
def recognize_text(image_path, tesseract_config='--psm 6 -l spa'):
"""
Performs OCR on an image and returns a DataFrame with character bounding boxes
and associated information.
Args:
image_path: Path to the image file.
tesseract_config: Configuration string for pytesseract (e.g., '--psm 6 -l spa').
Returns:
pandas.DataFrame: DataFrame containing character-level data (df_word_chars).
"""
# if os.environ['TESSDATA_PREFIX'] is not None:
# tesseract_config = f'--tessdata-dir "{tessdata_prefix}"' + tesseract_config
image = Image.open(image_path).convert('RGB')
if hasattr(image_path,'name'):
im_name = image_path.name
else:
im_name = image_path
image_height = image.height
# Extract filename for trial_id
trial_id = os.path.splitext(os.path.basename(im_name))[0]
# Use pytesseract to extract data for words and characters
data_words = pytesseract.image_to_data(image, config=tesseract_config)
data_chars = pytesseract.image_to_boxes(image, config=tesseract_config)
df_words = pd.read_csv(io.StringIO(data_words), sep='\t', quoting=csv.QUOTE_NONE)
df_chars = pd.read_csv(io.StringIO(data_chars), sep=' ', header=None, names=['char', 'left', 'top', 'right', 'bottom', 'unknown'])
# Fix character coordinates
for index, row in df_chars.iterrows():
original_top = int(row['top'])
original_bottom = int(row['bottom'])
df_chars.at[index, 'top'] = image_height - original_bottom
df_chars.at[index, 'bottom'] = image_height - original_top
# Create DataFrame to store spaces
df_spaces = pd.DataFrame(columns=['level', 'page_num', 'block_num', 'par_num', 'line_num', 'word_num', 'left', 'top', 'width', 'height', 'conf', 'text'])
# Group words by line, block, and paragraph
grouped_lines = df_words.groupby(['block_num', 'par_num', 'line_num'])
for (block_num, par_num, line_num), line_words_df in grouped_lines:
sorted_words = line_words_df.sort_values(by='left')
previous_word = None
for index, current_word in sorted_words.iterrows():
if previous_word is not None:
space_left = int(previous_word['left']) + int(previous_word['width'])
space_width = int(current_word['left']) - space_left
if space_width > 0:
space_top = int(previous_word['top'])
space_height = int(previous_word['height'])
space_data = {
'level': 5,
'page_num': int(current_word['page_num']),
'block_num': int(current_word['block_num']),
'par_num': int(current_word['par_num']),
'line_num': int(current_word['line_num']),
'word_num': int(previous_word['word_num']),
'left': space_left,
'top': space_top,
'width': space_width,
'height': space_height,
'conf': 0,
'text': ' '
}
df_spaces = pd.concat([df_spaces, pd.DataFrame(space_data, index=[0])], ignore_index=True)
previous_word = current_word
# Create DataFrame for characters within words (and spaces)
df_word_chars = pd.DataFrame(columns=['char', 'char_xmin', 'char_ymin', 'char_xmax', 'char_ymax',
'block', 'paragraph', 'line_number',
'word_nr', 'letter_nr', 'word',
'char_x_center', 'char_y_center', 'assigned_line', 'trial_id'])
for index_word, row_word in df_words.iterrows():
if isinstance(row_word['text'], str) and row_word['text'].strip() and row_word['level'] == 5:
word_left = int(row_word['left'])
word_top = int(row_word['top'])
word_width = int(row_word['width'])
word_height = int(row_word['height'])
word_right = word_left + word_width
word_bottom = word_top + word_height
word_text = row_word['text']
char_index_in_word = 0
relevant_chars = df_chars[
(df_chars['left'] >= word_left) & (df_chars['right'] <= word_right) &
(df_chars['top'] >= word_top) & (df_chars['bottom'] <= word_bottom)
]
relevant_chars = relevant_chars.sort_values(by='left')
previous_char_right = word_left
for index_char, row_char in relevant_chars.iterrows():
char_text = row_char['char']
char_left = previous_char_right
char_right = int(row_char['right'])
char_right = min(char_right, word_right)
if char_left > char_right:
char_right = int(row_char['right'])
char_top = word_top
char_bottom = word_bottom
char_data = {
'char': char_text,
'char_xmin': int(round(char_left)), # Round and convert to int
'char_ymin': int(round(char_top)), # Round and convert to int
'char_xmax': int(round(char_right)), # Round and convert to int
'char_ymax': int(round(char_bottom)), # Round and convert to int
'block': int(row_word['block_num']),
'paragraph': int(row_word['par_num']),
'line_number': int(row_word['line_num']),
'word_nr': int(row_word['word_num']),
'letter_nr': int(char_index_in_word), #already an int
'word': word_text,
'char_x_center': int(round((char_left + char_right) / 2)), # Round and convert
'char_y_center': int(round((char_top + char_bottom) / 2)), # Round and convert
'assigned_line': None,
'trial_id': trial_id
}
df_word_chars = pd.concat([df_word_chars, pd.DataFrame(char_data, index=[0])], ignore_index=True)
char_index_in_word += 1
previous_char_right = char_right
spaces_following_word = df_spaces[
(df_spaces['word_num'] == int(row_word['word_num'])) &
(df_spaces['line_num'] == int(row_word['line_num'])) &
(df_spaces['block_num'] == int(row_word['block_num'])) &
(df_spaces['par_num'] == int(row_word['par_num']))
]
for index_space, row_space in spaces_following_word.iterrows():
space_data = {
'char': ' ',
'char_xmin': int(round(row_space['left'])), # Round and convert
'char_ymin': int(round(row_space['top'])), # Round and convert
'char_xmax': int(round(row_space['left'] + row_space['width'])), # Round and convert
'char_ymax': int(round(row_space['top'] + row_space['height'])), # Round and convert
'block': int(row_space['block_num']),
'paragraph': int(row_space['par_num']),
'line_number': int(row_space['line_num']),
'word_nr': int(row_space['word_num']),
'letter_nr': int(char_index_in_word), # Already int
'word': word_text,
'char_x_center': int(round((row_space['left'] + row_space['left'] + row_space['width']) / 2)), # Round
'char_y_center': int(round((row_space['top'] + row_space['top'] + row_space['height']) / 2)), # Round
'assigned_line': None,
'trial_id': trial_id
}
df_word_chars = pd.concat([df_word_chars, pd.DataFrame(space_data, index=[0])], ignore_index=True)
char_index_in_word += 1
# Create 'assigned_line' column
df_word_chars['assigned_line'] = 0
line_counter = 1
for block_num in sorted(df_word_chars['block'].unique()):
for par_num in sorted(df_word_chars.loc[df_word_chars['block'] == block_num, 'paragraph'].unique()):
for line_num in sorted(df_word_chars.loc[(df_word_chars['block'] == block_num) & (df_word_chars['paragraph'] == par_num), 'line_number'].unique()):
line_mask = (df_word_chars['line_number'] == line_num) & (df_word_chars['paragraph'] == par_num) & (df_word_chars['block'] == block_num)
df_word_chars.loc[line_mask, 'assigned_line'] = line_counter
line_counter += 1
# Adjust Y_Start, Y_End, and char_y_center, converting to integers
for assigned_line in df_word_chars['assigned_line'].unique():
line_mask = (df_word_chars['assigned_line'] == assigned_line)
min_top = df_word_chars.loc[line_mask, 'char_ymin'].min()
max_bottom = df_word_chars.loc[line_mask, 'char_ymax'].max()
new_y_center = (min_top + max_bottom) / 2
df_word_chars.loc[line_mask, 'char_ymin'] = int(round(min_top)) # Round and convert
df_word_chars.loc[line_mask, 'char_ymax'] = int(round(max_bottom)) # Round and convert
df_word_chars.loc[line_mask, 'char_y_center'] = int(round(new_y_center)) # Round and convert
# Convert relevant columns to integers
int_columns = ['char_xmin', 'char_ymin', 'char_xmax', 'char_ymax', 'block', 'paragraph',
'line_number', 'word_nr', 'letter_nr', 'char_x_center', 'char_y_center', 'assigned_line']
for col in int_columns:
df_word_chars[col] = df_word_chars[col].astype(int)
return df_word_chars
def draw_char_boxes(image_path, df_word_chars, output_path='output_boxes_combined.png'):
"""
Draws bounding boxes around characters on the image.
Args:
image_path: Path to the image file.
df_word_chars: DataFrame containing character bounding box data.
output_path: Path to save the image with bounding boxes. Defaults to 'output_boxes_combined.png'.
"""
image = Image.open(image_path).convert('RGB')
draw = ImageDraw.Draw(image)
# Draw bounding boxes for characters (purple)
for index, row in df_word_chars.iterrows():
left = int(row['char_xmin'])
top = int(row['char_ymin'])
right = int(row['char_xmax'])
bottom = int(row['char_ymax'])
draw.rectangle([(left, top), (right, bottom)], outline='purple', width=1)
# Display or save the image
image.save(output_path)
# Example usage
if __name__ == '__main__':
# image_path = 'testfiles/testim_ocr.png'
image_path = 'testfiles/newplot.png'
# Example with default tesseract config
df_chars = recognize_text(image_path)
draw_char_boxes(image_path, df_chars)
df_chars.to_csv('testim_ocr_df_word_chars_test.csv', index=False)
print("\nDataFrame of Characters within Words (df_word_chars) - Default Config:")
print(df_chars)