Spaces:
Sleeping
Sleeping
File size: 11,098 Bytes
71c632c 323e21c 71c632c 93ae679 146b51b d19085e 146b51b 323e21c d19085e 71c632c 323e21c d19085e 71c632c d19085e 323e21c d19085e 646deb1 93ae679 146b51b d19085e 93ae679 146b51b 93ae679 146b51b 323e21c 7ecbb59 146b51b 7ecbb59 146b51b 7ecbb59 323e21c 146b51b 1756424 146b51b 71c632c 323e21c 146b51b 323e21c 146b51b 323e21c 146b51b 323e21c 146b51b 323e21c 146b51b 71c632c 93ae679 146b51b d19085e 08c1eb5 d19085e 08c1eb5 146b51b d19085e 93ae679 146b51b d19085e 146b51b 323e21c d19085e 146b51b 323e21c d19085e 323e21c d19085e 323e21c 93ae679 d19085e 323e21c 146b51b d19085e 323e21c d19085e 93ae679 d19085e 93ae679 d19085e 93ae679 d19085e 323e21c 93ae679 d19085e 93ae679 d19085e 93ae679 146b51b 323e21c 146b51b d19085e 146b51b d19085e 146b51b 71c632c 146b51b 323e21c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
"""
Mylangv2: Process raw text or uploaded document into vectorstore and generate questions via Azure OpenAI using LangChain.
Includes a simple CLI test at the bottom to verify both `process_text` and `process_uploaded_document`.
"""
import os
import logging
import re
import json
import numpy as np
from dotenv import load_dotenv
from typing import Dict, List, Any, Tuple, Optional
# LangChain and Azure OpenAI imports
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain.evaluation import load_evaluator
# Vectorstore: FAISS
try:
from langchain_community.vectorstores import FAISS
except ImportError as e:
FAISS = None
logging.warning(
"FAISS import failed (%s). Falling back to in-memory store. "
"Install faiss-cpu/faiss-gpu or downgrade NumPy to <2.0 to enable FAISS." % e
)
# Load env vars
dotenv_path = os.getenv('DOTENV_PATH')
if dotenv_path:
load_dotenv(dotenv_path)
else:
load_dotenv()
# Validate env vars
def check_env():
required = [
"AZURE_OPENAI_API_KEY",
"AZURE_OPENAI_ENDPOINT",
"AZURE_OPENAI_EMBEDDING_DEPLOYMENT",
"AZURE_OPENAI_CHAT_DEPLOYMENT",
"AZURE_OPENAI_API_VERSION"
]
missing = [v for v in required if not os.getenv(v)]
if missing:
raise EnvironmentError(f"Missing required environment variables: {', '.join(missing)}")
class DocumentProcessor:
def __init__(
self,
embeddings: Optional[AzureOpenAIEmbeddings] = None,
text_splitter: Optional[RecursiveCharacterTextSplitter] = None
):
"""Initialize DocumentProcessor with injectable embeddings and splitter."""
self.embeddings = embeddings or AzureOpenAIEmbeddings(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
model=os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")
)
self.text_splitter = text_splitter or RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
separators=["\n\n", "\n", " ", ""]
)
def _create_fallback_vectorstore(self, texts: List[str]) -> Any:
"""Creates a basic in-memory vectorstore with cosine similarity search and embedding shape checks."""
embs = self.embeddings.embed_documents(texts)
dim = len(embs[0]) if embs else 0
class Doc:
def __init__(self, content: str):
self.page_content = content
class BasicVectorStore:
def __init__(self, texts: List[str], embs: List[List[float]]):
self.texts = texts
self.embs = embs
def similarity_search(self, query: str, k: int = 3) -> List[Doc]:
q_emb = self.embeddings.embed_query(query)
if len(q_emb) != dim:
raise ValueError(f"Query embedding dimension {len(q_emb)} != stored dimension {dim}")
sims = []
for emb in self.embs:
if len(emb) != dim:
raise ValueError("Stored embedding has unexpected dimension")
sims.append(np.dot(q_emb, emb) / (np.linalg.norm(q_emb) * np.linalg.norm(emb)))
idxs = sorted(range(len(sims)), key=lambda i: sims[i], reverse=True)[:k]
return [Doc(self.texts[i]) for i in idxs]
# Bind embeddings for inner class
BasicVectorStore.embeddings = self.embeddings
return BasicVectorStore(texts, embs)
def process_text(self, text: str, persist_directory: str = None) -> Tuple[Any, List[str], Dict[str, str]]:
"""Split raw text, build vectorstore (FAISS or fallback), return store, chunks, and metadata."""
chunks = self.text_splitter.split_text(text)
backend = 'fallback'
if FAISS:
try:
vs = FAISS.from_texts(texts=chunks, embedding=self.embeddings)
backend = 'faiss'
if persist_directory:
vs.save_local(persist_directory)
_log_vectorstore_size(persist_directory)
logging.info(f"Processed {len(chunks)} chunks into FAISS vectorstore.")
return vs, chunks, {'backend': backend}
except Exception as e:
logging.warning(f"FAISS.from_texts failed ({e}), using fallback vectorstore.")
vs_fb = self._create_fallback_vectorstore(chunks)
logging.info(f"Processed {len(chunks)} chunks into fallback vectorstore.")
return vs_fb, chunks, {'backend': backend}
def process_uploaded_document(
self, pdf_path: str, persist_directory: str = None
) -> Tuple[Any, List[str], Dict[str, str]]:
"""Load PDF, split, build vectorstore, and return store, raw texts, and metadata."""
loader = PyPDFLoader(pdf_path)
pages = loader.load()
docs = self.text_splitter.split_documents(pages)
texts = [doc.page_content for doc in docs]
backend = 'fallback'
if FAISS:
try:
vs = FAISS.from_documents(documents=docs, embedding=self.embeddings)
backend = 'faiss'
if persist_directory:
vs.save_local(persist_directory)
_log_vectorstore_size(persist_directory)
logging.info(f"Processed PDF with {len(texts)} chunks into FAISS vectorstore.")
return vs, texts, {'backend': backend}
except Exception as e:
logging.warning(f"FAISS.from_documents failed ({e}), falling back.")
vs_fb = self._create_fallback_vectorstore(texts)
logging.info(f"Processed PDF with {len(texts)} chunks into fallback vectorstore.")
return vs_fb, texts, {'backend': backend}
class QuestionGenerator:
def __init__(self, prompt_template_path: str = None):
# Load prompt template from file or default
if prompt_template_path and os.path.exists(prompt_template_path):
with open(prompt_template_path) as f:
template_str = f.read()
else:
template_str = (
"""
Based on the following context:
{context}
Generate {num_questions} {question_type} questions for:
Subject: {subject}
Class: {class_grade}
Topic: {topic}
Difficulty: {difficulty}
Bloom's Level: {bloom_level}
Additional Instructions: {instructions}
Format as JSON:
{"questions": [{"question":"","options":[],"correctAnswer":"","explanation":""}]}
"""
)
self.llm = AzureChatOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
model=os.getenv("AZURE_OPENAI_CHAT_DEPLOYMENT"),
temperature=0.3
)
self.chain = LLMChain(
llm=self.llm,
prompt=PromptTemplate(
input_variables=[
"context","num_questions","question_type","subject",
"class_grade","topic","difficulty","bloom_level","instructions"
],
template=template_str
)
)
def generate_questions(self, topic_data: Dict[str, Any], vectorstore: Any) -> Dict[str, Any]:
# Validate topic_data keys
required_keys = [
'subjectName','sectionName','numQuestions','questionType',
'classGrade','difficulty','bloomLevel'
]
missing = [k for k in required_keys if k not in topic_data]
if missing:
raise ValueError(f"Missing required topic_data keys: {', '.join(missing)}")
context = ""
if vectorstore:
docs = vectorstore.similarity_search(
f"{topic_data['subjectName']} {topic_data['sectionName']}", k=3
)
context = "\n".join(getattr(doc, 'page_content', '') for doc in docs)
logging.info(f"Context length: {len(context)}")
payload = {
"context": context,
"num_questions": topic_data['numQuestions'],
"question_type": topic_data['questionType'],
"subject": topic_data['subjectName'],
"class_grade": topic_data['classGrade'],
"topic": topic_data['sectionName'],
"difficulty": topic_data['difficulty'],
"bloom_level": topic_data['bloomLevel'],
"instructions": topic_data.get('additionalInstructions','')
}
response = self.chain.invoke(payload)
text = response.get('text', response) if isinstance(response, dict) else response
output = text.strip()
if output.startswith('```') and output.endswith('```'):
output = re.sub(r'^```[a-zA-Z]*|```$', '', output).strip()
try:
result = json.loads(output)
except json.JSONDecodeError:
logging.error(f"JSON parsing failed. Raw output: {output}")
raise
if 'questions' not in result:
raise ValueError(f"Missing 'questions' key in output JSON: {result}")
return result
class QuestionEvaluator:
def __init__(self):
common = dict(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
model=os.getenv("AZURE_OPENAI_CHAT_DEPLOYMENT")
)
self.evaluator = load_evaluator(
"qa",
llm=AzureChatOpenAI(**common, temperature=0)
)
def evaluate(self, question: str, answer: str, reference: str) -> Dict[str, Any]:
"""Evaluate question-answer pair against reference."""
try:
return self.evaluator.evaluate_strings(
input=question,
prediction=answer,
reference=reference
)
except Exception as e:
logging.error(f"Evaluation error: {e}")
raise
# Helper for logging vectorstore size
def _log_vectorstore_size(directory: str):
total = 0
for root, _, files in os.walk(directory):
for f in files:
total += os.path.getsize(os.path.join(root, f))
logging.info(f"Vectorstore on disk: {total/1024:.2f} KB")
# CLI test and env validation
def main():
# Validate env only on script run
check_env()
dp = DocumentProcessor()
sample = "This is a simple test. It splits into chunks and embeds."
vs, chunks, meta = dp.process_text(sample)
print("Chunks:", chunks)
print("Backend used:", meta['backend'])
if os.path.exists('sample.pdf'):
vs2, raw, meta2 = dp.process_uploaded_document('sample.pdf')
print("PDF raw chunks count:", len(raw), "Backend:", meta2['backend'])
if __name__ == "__main__":
main() |