Updates utlity functions
Browse files- src/utils.py +34 -7
src/utils.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
|
| 3 |
import cv2
|
| 4 |
import matplotlib.image as mpimg
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image, ImageOps
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)):
|
|
@@ -50,7 +52,7 @@ def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)):
|
|
| 50 |
return squared_img
|
| 51 |
|
| 52 |
|
| 53 |
-
def track_files(folder_path, extensions=(
|
| 54 |
"""
|
| 55 |
Track all the files in a folder and its subfolders.
|
| 56 |
|
|
@@ -83,7 +85,6 @@ def track_files(folder_path, extensions=('.jpg', '.jpeg', '.png')):
|
|
| 83 |
return file_list
|
| 84 |
|
| 85 |
|
| 86 |
-
|
| 87 |
def crop_circle_roi(image_path):
|
| 88 |
"""
|
| 89 |
Crop the circular Region of Interest (ROI) from a fundus image.
|
|
@@ -104,7 +105,9 @@ def crop_circle_roi(image_path):
|
|
| 104 |
_, thresholded_image = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY)
|
| 105 |
|
| 106 |
# Find contours in the binary image
|
| 107 |
-
contours, _ = cv2.findContours(
|
|
|
|
|
|
|
| 108 |
|
| 109 |
# Assuming the largest contour corresponds to the ROI
|
| 110 |
contour = max(contours, key=cv2.contourArea)
|
|
@@ -113,10 +116,11 @@ def crop_circle_roi(image_path):
|
|
| 113 |
x, y, w, h = cv2.boundingRect(contour)
|
| 114 |
|
| 115 |
# Crop the circular ROI using the bounding rectangle
|
| 116 |
-
cropped_roi = image[y:y+h, x:x+w]
|
| 117 |
|
| 118 |
return cropped_roi
|
| 119 |
|
|
|
|
| 120 |
def plot_image_grid(image_paths, roi_crop=False):
|
| 121 |
"""
|
| 122 |
Create a grid plot with a maximum of 16 images.
|
|
@@ -138,9 +142,32 @@ def plot_image_grid(image_paths, roi_crop=False):
|
|
| 138 |
else:
|
| 139 |
img = mpimg.imread(image_paths[i])
|
| 140 |
ax.imshow(img)
|
| 141 |
-
ax.axis(
|
| 142 |
else:
|
| 143 |
-
ax.axis(
|
| 144 |
|
| 145 |
plt.tight_layout()
|
| 146 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from datetime import datetime
|
| 3 |
|
| 4 |
import cv2
|
| 5 |
import matplotlib.image as mpimg
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image, ImageOps
|
| 9 |
+
from zoneinfo import ZoneInfo
|
| 10 |
|
| 11 |
|
| 12 |
def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)):
|
|
|
|
| 52 |
return squared_img
|
| 53 |
|
| 54 |
|
| 55 |
+
def track_files(folder_path, extensions=(".jpg", ".jpeg", ".png")):
|
| 56 |
"""
|
| 57 |
Track all the files in a folder and its subfolders.
|
| 58 |
|
|
|
|
| 85 |
return file_list
|
| 86 |
|
| 87 |
|
|
|
|
| 88 |
def crop_circle_roi(image_path):
|
| 89 |
"""
|
| 90 |
Crop the circular Region of Interest (ROI) from a fundus image.
|
|
|
|
| 105 |
_, thresholded_image = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY)
|
| 106 |
|
| 107 |
# Find contours in the binary image
|
| 108 |
+
contours, _ = cv2.findContours(
|
| 109 |
+
thresholded_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
| 110 |
+
)
|
| 111 |
|
| 112 |
# Assuming the largest contour corresponds to the ROI
|
| 113 |
contour = max(contours, key=cv2.contourArea)
|
|
|
|
| 116 |
x, y, w, h = cv2.boundingRect(contour)
|
| 117 |
|
| 118 |
# Crop the circular ROI using the bounding rectangle
|
| 119 |
+
cropped_roi = image[y : y + h, x : x + w]
|
| 120 |
|
| 121 |
return cropped_roi
|
| 122 |
|
| 123 |
+
|
| 124 |
def plot_image_grid(image_paths, roi_crop=False):
|
| 125 |
"""
|
| 126 |
Create a grid plot with a maximum of 16 images.
|
|
|
|
| 142 |
else:
|
| 143 |
img = mpimg.imread(image_paths[i])
|
| 144 |
ax.imshow(img)
|
| 145 |
+
ax.axis("off")
|
| 146 |
else:
|
| 147 |
+
ax.axis("off")
|
| 148 |
|
| 149 |
plt.tight_layout()
|
| 150 |
+
plt.show()
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def generate_run_id(zone: ZoneInfo = ZoneInfo("Asia/Kathmandu")) -> str:
|
| 154 |
+
"""Generate a unique run ID using current UTC date and time.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
zone (ZoneInfo, optional): Timezone information. Defaults to Indian Standard Time.
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
str: A unique run ID in the format 'run-YYYY-MM-DD-HH-MM-SS'.
|
| 161 |
+
"""
|
| 162 |
+
try:
|
| 163 |
+
current_utc_time = datetime.utcnow().astimezone(zone)
|
| 164 |
+
formatted_time = current_utc_time.strftime("%Y-%m-%d-%H-%M-%S")
|
| 165 |
+
return f"run-{formatted_time}"
|
| 166 |
+
except Exception as e:
|
| 167 |
+
# Handle exceptions gracefully
|
| 168 |
+
print(f"Error generating run ID: {e}")
|
| 169 |
+
return None # Or raise an exception if appropriate
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
if __name__ == "__main__":
|
| 173 |
+
print(generate_run_id())
|