Spaces:
Sleeping
Sleeping
| import torch | |
| from diffusers import DiffusionPipeline | |
| import gradio as gr | |
| import spaces | |
| # Load the pre-trained diffusion model | |
| pipe = DiffusionPipeline.from_pretrained('ptx0/terminus-xl-velocity-v2', torch_dtype=torch.bfloat16) | |
| pipe.to('cuda') | |
| # Define the image generation function with adjustable parameters and a progress bar | |
| def generate(prompt, guidance_scale, num_inference_steps, negative_prompt): | |
| with gr.Progress(steps=num_inference_steps) as progress: | |
| for i in range(num_inference_steps): | |
| progress.update(progress=i) | |
| return pipe( | |
| prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps | |
| ).images | |
| # Example prompts to demonstrate the model's capabilities | |
| example_prompts = [ | |
| ["A futuristic cityscape at night under a starry sky", 7.5, 25, "blurry, overexposed"], | |
| ["A serene landscape with a flowing river and autumn trees", 8.0, 20, "crowded, noisy"], | |
| ["An abstract painting of joy and energy in bright colors", 9.0, 30, "dark, dull"] | |
| ] | |
| # Create a Gradio interface | |
| iface = gr.Interface( | |
| fn=generate, | |
| inputs=[ | |
| gr.Text(label="Enter your prompt"), | |
| gr.Slider(5, 10, step=0.1, label="Guidance Scale", value=7.5), | |
| gr.Slider(10, 50, step=5, label="Number of Inference Steps", value=25), | |
| gr.Text(value="underexposed, blurry, ugly, washed-out", label="Negative Prompt") | |
| ], | |
| outputs=gr.Gallery(height=1024, min_width=1024, columns=2), | |
| examples=example_prompts, | |
| title="Image Generation with Diffusion Model", | |
| description="Generate images based on textual prompts. Adjust the parameters to see how they affect the outcome." | |
| ).launch() | |