Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,686 Bytes
fda6e40 bfe1e2c fda6e40 bfe1e2c fda6e40 bfe1e2c fda6e40 bfe1e2c fda6e40 bfe1e2c fda6e40 bfe1e2c fda6e40 bfe1e2c fda6e40 bfe1e2c fda6e40 04ac83f fda6e40 bfe1e2c fda6e40 45cd355 b3653e3 45cd355 bfe1e2c fda6e40 bfe1e2c fda6e40 bfe1e2c fda6e40 bfe1e2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import os
import torchaudio
import gradio as gr
import spaces
import torch
from transformers import AutoProcessor, AutoModelForCTC
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# load examples
examples = []
examples_dir = "examples"
if os.path.exists(examples_dir):
for filename in os.listdir(examples_dir):
if filename.endswith((".wav", ".mp3", ".ogg")):
examples.append([os.path.join(examples_dir, filename)])
# Load model and processor
MODEL_PATH = "badrex/w2v-bert-2.0-kinyarwanda-asr"
processor = AutoProcessor.from_pretrained(MODEL_PATH)
model = AutoModelForCTC.from_pretrained(MODEL_PATH)
# move model and processor to device
model = model.to(device)
@spaces.GPU()
def process_audio(audio_path):
"""Process audio with return the generated response.
Args:
audio_path: Path to the audio file to be transcribed.
Returns:
String containing the transcribed text from the audio file, or an error message
if the audio file is missing.
"""
if not audio_path:
return "Please upload an audio file."
# get audio array
audio_array, sample_rate = torchaudio.load(audio_path)
# if sample rate is not 16000, resample to 16000
if sample_rate != 16000:
audio_array = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio_array)
inputs = processor(audio_array, sampling_rate=16000, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
logits = model(**inputs).logits
outputs = torch.argmax(logits, dim=-1)
decoded_outputs = processor.batch_decode(
outputs,
skip_special_tokens=True
)
return decoded_outputs[0].strip()
# Define Gradio interface
with gr.Blocks(title="<div>ASRwanda ๐๏ธ <br>Speech Recognition for Kinyarwanda</div>") as demo:
gr.Markdown("""
<div class="centered-content">
<div>
<p>
Developed with โค by <a href="https://badrex.github.io/" style="color: #2563eb;">Badr al-Absi</a> โ
</p>
<br>
<p style="font-size: 15px; line-height: 1.8;">
Muraho ๐๐ผ
<br><br>
This is a demo for ASRwanda, a Transformer-based automatic speech recognition (ASR) system for Kinyarwanda language.
The underlying ASR model was trained on 1000 hours of transcribed speech provided by
<a href="https://digitalumuganda.com/" style="color: #2563eb;">Digital Umuganda</a> as part of the Kinyarwanda
<a href="https://www.kaggle.com/competitions/kinyarwanda-automatic-speech-recognition-track-b" style="color: #2563eb;"> ASR hackathon</a> on Kaggle.
<br><br>
Simply <strong>upload an audio file</strong> ๐ค or <strong>record yourself speaking</strong> ๐๏ธโบ๏ธ to try out the model!
</p>
</div>
</div>
""")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload Audio")
submit_btn = gr.Button("Transcribe Audio", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Text Transcription", lines=10)
submit_btn.click(
fn=process_audio,
inputs=[audio_input],
outputs=output_text
)
gr.Examples(
examples=examples if examples else None,
inputs=[audio_input],
)
# Launch the app
if __name__ == "__main__":
demo.queue().launch()
|