Create backup-03252025.app.py
Browse files- backup-03252025.app.py +564 -0
backup-03252025.app.py
ADDED
|
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import glob
|
| 4 |
+
import base64
|
| 5 |
+
import time
|
| 6 |
+
import shutil
|
| 7 |
+
import streamlit as st
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
| 13 |
+
from diffusers import StableDiffusionPipeline
|
| 14 |
+
from torch.utils.data import Dataset, DataLoader
|
| 15 |
+
import csv
|
| 16 |
+
import fitz
|
| 17 |
+
import requests
|
| 18 |
+
from PIL import Image
|
| 19 |
+
import cv2
|
| 20 |
+
import numpy as np
|
| 21 |
+
import logging
|
| 22 |
+
import asyncio
|
| 23 |
+
import aiofiles
|
| 24 |
+
from io import BytesIO
|
| 25 |
+
from dataclasses import dataclass
|
| 26 |
+
from typing import Optional, Tuple
|
| 27 |
+
import zipfile
|
| 28 |
+
import math
|
| 29 |
+
import random
|
| 30 |
+
import re
|
| 31 |
+
|
| 32 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 33 |
+
logger = logging.getLogger(__name__)
|
| 34 |
+
log_records = []
|
| 35 |
+
|
| 36 |
+
class LogCaptureHandler(logging.Handler):
|
| 37 |
+
def emit(self, record):
|
| 38 |
+
log_records.append(record)
|
| 39 |
+
|
| 40 |
+
logger.addHandler(LogCaptureHandler())
|
| 41 |
+
|
| 42 |
+
st.set_page_config(
|
| 43 |
+
page_title="AI Vision & SFT Titans 🚀",
|
| 44 |
+
page_icon="🤖",
|
| 45 |
+
layout="wide",
|
| 46 |
+
initial_sidebar_state="expanded",
|
| 47 |
+
menu_items={
|
| 48 |
+
'Get Help': 'https://huggingface.co/awacke1',
|
| 49 |
+
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
| 50 |
+
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
|
| 51 |
+
}
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
if 'history' not in st.session_state:
|
| 55 |
+
st.session_state['history'] = []
|
| 56 |
+
if 'builder' not in st.session_state:
|
| 57 |
+
st.session_state['builder'] = None
|
| 58 |
+
if 'model_loaded' not in st.session_state:
|
| 59 |
+
st.session_state['model_loaded'] = False
|
| 60 |
+
if 'processing' not in st.session_state:
|
| 61 |
+
st.session_state['processing'] = {}
|
| 62 |
+
if 'asset_checkboxes' not in st.session_state:
|
| 63 |
+
st.session_state['asset_checkboxes'] = {}
|
| 64 |
+
if 'downloaded_pdfs' not in st.session_state:
|
| 65 |
+
st.session_state['downloaded_pdfs'] = {}
|
| 66 |
+
if 'unique_counter' not in st.session_state:
|
| 67 |
+
st.session_state['unique_counter'] = 0
|
| 68 |
+
if 'selected_model_type' not in st.session_state:
|
| 69 |
+
st.session_state['selected_model_type'] = "Causal LM"
|
| 70 |
+
if 'selected_model' not in st.session_state:
|
| 71 |
+
st.session_state['selected_model'] = "None"
|
| 72 |
+
if 'cam0_file' not in st.session_state:
|
| 73 |
+
st.session_state['cam0_file'] = None
|
| 74 |
+
if 'cam1_file' not in st.session_state:
|
| 75 |
+
st.session_state['cam1_file'] = None
|
| 76 |
+
|
| 77 |
+
@dataclass
|
| 78 |
+
class ModelConfig:
|
| 79 |
+
name: str
|
| 80 |
+
base_model: str
|
| 81 |
+
size: str
|
| 82 |
+
domain: Optional[str] = None
|
| 83 |
+
model_type: str = "causal_lm"
|
| 84 |
+
@property
|
| 85 |
+
def model_path(self):
|
| 86 |
+
return f"models/{self.name}"
|
| 87 |
+
|
| 88 |
+
@dataclass
|
| 89 |
+
class DiffusionConfig:
|
| 90 |
+
name: str
|
| 91 |
+
base_model: str
|
| 92 |
+
size: str
|
| 93 |
+
domain: Optional[str] = None
|
| 94 |
+
@property
|
| 95 |
+
def model_path(self):
|
| 96 |
+
return f"diffusion_models/{self.name}"
|
| 97 |
+
|
| 98 |
+
class ModelBuilder:
|
| 99 |
+
def __init__(self):
|
| 100 |
+
self.config = None
|
| 101 |
+
self.model = None
|
| 102 |
+
self.tokenizer = None
|
| 103 |
+
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
| 104 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 105 |
+
with st.spinner(f"Loading {model_path}... ⏳"):
|
| 106 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 107 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 108 |
+
if self.tokenizer.pad_token is None:
|
| 109 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 110 |
+
if config:
|
| 111 |
+
self.config = config
|
| 112 |
+
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 113 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
| 114 |
+
return self
|
| 115 |
+
def save_model(self, path: str):
|
| 116 |
+
with st.spinner("Saving model... 💾"):
|
| 117 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 118 |
+
self.model.save_pretrained(path)
|
| 119 |
+
self.tokenizer.save_pretrained(path)
|
| 120 |
+
st.success(f"Model saved at {path}! ✅")
|
| 121 |
+
|
| 122 |
+
class DiffusionBuilder:
|
| 123 |
+
def __init__(self):
|
| 124 |
+
self.config = None
|
| 125 |
+
self.pipeline = None
|
| 126 |
+
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
| 127 |
+
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
|
| 128 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
| 129 |
+
if config:
|
| 130 |
+
self.config = config
|
| 131 |
+
st.success(f"Diffusion model loaded! 🎨")
|
| 132 |
+
return self
|
| 133 |
+
def save_model(self, path: str):
|
| 134 |
+
with st.spinner("Saving diffusion model... 💾"):
|
| 135 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 136 |
+
self.pipeline.save_pretrained(path)
|
| 137 |
+
st.success(f"Diffusion model saved at {path}! ✅")
|
| 138 |
+
def generate(self, prompt: str):
|
| 139 |
+
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
| 140 |
+
|
| 141 |
+
def generate_filename(sequence, ext="png"):
|
| 142 |
+
timestamp = time.strftime("%d%m%Y%H%M%S")
|
| 143 |
+
return f"{sequence}_{timestamp}.{ext}"
|
| 144 |
+
|
| 145 |
+
def pdf_url_to_filename(url):
|
| 146 |
+
safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
|
| 147 |
+
return f"{safe_name}.pdf"
|
| 148 |
+
|
| 149 |
+
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
| 150 |
+
with open(file_path, 'rb') as f:
|
| 151 |
+
data = f.read()
|
| 152 |
+
b64 = base64.b64encode(data).decode()
|
| 153 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
|
| 154 |
+
|
| 155 |
+
def zip_directory(directory_path, zip_path):
|
| 156 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 157 |
+
for root, _, files in os.walk(directory_path):
|
| 158 |
+
for file in files:
|
| 159 |
+
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
| 160 |
+
|
| 161 |
+
def get_model_files(model_type="causal_lm"):
|
| 162 |
+
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
| 163 |
+
dirs = [d for d in glob.glob(path) if os.path.isdir(d)]
|
| 164 |
+
return dirs if dirs else ["None"]
|
| 165 |
+
|
| 166 |
+
def get_gallery_files(file_types=["png", "pdf"]):
|
| 167 |
+
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
|
| 168 |
+
|
| 169 |
+
def get_pdf_files():
|
| 170 |
+
return sorted(glob.glob("*.pdf"))
|
| 171 |
+
|
| 172 |
+
def download_pdf(url, output_path):
|
| 173 |
+
try:
|
| 174 |
+
response = requests.get(url, stream=True, timeout=10)
|
| 175 |
+
if response.status_code == 200:
|
| 176 |
+
with open(output_path, "wb") as f:
|
| 177 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 178 |
+
f.write(chunk)
|
| 179 |
+
return True
|
| 180 |
+
except requests.RequestException as e:
|
| 181 |
+
logger.error(f"Failed to download {url}: {e}")
|
| 182 |
+
return False
|
| 183 |
+
|
| 184 |
+
async def process_pdf_snapshot(pdf_path, mode="single"):
|
| 185 |
+
start_time = time.time()
|
| 186 |
+
status = st.empty()
|
| 187 |
+
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
| 188 |
+
try:
|
| 189 |
+
doc = fitz.open(pdf_path)
|
| 190 |
+
output_files = []
|
| 191 |
+
if mode == "single":
|
| 192 |
+
page = doc[0]
|
| 193 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 194 |
+
output_file = generate_filename("single", "png")
|
| 195 |
+
pix.save(output_file)
|
| 196 |
+
output_files.append(output_file)
|
| 197 |
+
elif mode == "twopage":
|
| 198 |
+
for i in range(min(2, len(doc))):
|
| 199 |
+
page = doc[i]
|
| 200 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 201 |
+
output_file = generate_filename(f"twopage_{i}", "png")
|
| 202 |
+
pix.save(output_file)
|
| 203 |
+
output_files.append(output_file)
|
| 204 |
+
elif mode == "allpages":
|
| 205 |
+
for i in range(len(doc)):
|
| 206 |
+
page = doc[i]
|
| 207 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 208 |
+
output_file = generate_filename(f"page_{i}", "png")
|
| 209 |
+
pix.save(output_file)
|
| 210 |
+
output_files.append(output_file)
|
| 211 |
+
doc.close()
|
| 212 |
+
elapsed = int(time.time() - start_time)
|
| 213 |
+
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
| 214 |
+
update_gallery()
|
| 215 |
+
return output_files
|
| 216 |
+
except Exception as e:
|
| 217 |
+
status.error(f"Failed to process PDF: {str(e)}")
|
| 218 |
+
return []
|
| 219 |
+
|
| 220 |
+
async def process_ocr(image, output_file):
|
| 221 |
+
start_time = time.time()
|
| 222 |
+
status = st.empty()
|
| 223 |
+
status.text("Processing GOT-OCR2_0... (0s)")
|
| 224 |
+
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
| 225 |
+
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
| 226 |
+
# Save image to temporary file since GOT-OCR2_0 expects a file path
|
| 227 |
+
temp_file = f"temp_{int(time.time())}.png"
|
| 228 |
+
image.save(temp_file)
|
| 229 |
+
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
|
| 230 |
+
os.remove(temp_file) # Clean up temporary file
|
| 231 |
+
elapsed = int(time.time() - start_time)
|
| 232 |
+
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
| 233 |
+
async with aiofiles.open(output_file, "w") as f:
|
| 234 |
+
await f.write(result)
|
| 235 |
+
update_gallery()
|
| 236 |
+
return result
|
| 237 |
+
|
| 238 |
+
async def process_image_gen(prompt, output_file):
|
| 239 |
+
start_time = time.time()
|
| 240 |
+
status = st.empty()
|
| 241 |
+
status.text("Processing Image Gen... (0s)")
|
| 242 |
+
if st.session_state['builder'] and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline:
|
| 243 |
+
pipeline = st.session_state['builder'].pipeline
|
| 244 |
+
else:
|
| 245 |
+
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
| 246 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
| 247 |
+
elapsed = int(time.time() - start_time)
|
| 248 |
+
status.text(f"Image Gen completed in {elapsed}s!")
|
| 249 |
+
gen_image.save(output_file)
|
| 250 |
+
update_gallery()
|
| 251 |
+
return gen_image
|
| 252 |
+
|
| 253 |
+
st.title("AI Vision & SFT Titans 🚀")
|
| 254 |
+
|
| 255 |
+
# Sidebar
|
| 256 |
+
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type", index=0 if st.session_state['selected_model_type'] == "Causal LM" else 1)
|
| 257 |
+
model_dirs = get_model_files(model_type)
|
| 258 |
+
if model_dirs and st.session_state['selected_model'] == "None" and "None" not in model_dirs:
|
| 259 |
+
st.session_state['selected_model'] = model_dirs[0]
|
| 260 |
+
selected_model = st.sidebar.selectbox("Select Saved Model", model_dirs, key="sidebar_model_select", index=model_dirs.index(st.session_state['selected_model']) if st.session_state['selected_model'] in model_dirs else 0)
|
| 261 |
+
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
| 262 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
| 263 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
|
| 264 |
+
builder.load_model(selected_model, config)
|
| 265 |
+
st.session_state['builder'] = builder
|
| 266 |
+
st.session_state['model_loaded'] = True
|
| 267 |
+
st.rerun()
|
| 268 |
+
|
| 269 |
+
st.sidebar.header("Captured Files 📜")
|
| 270 |
+
cols = st.sidebar.columns(2)
|
| 271 |
+
with cols[0]:
|
| 272 |
+
if st.button("Zip All 🤐"):
|
| 273 |
+
zip_path = f"all_assets_{int(time.time())}.zip"
|
| 274 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 275 |
+
for file in get_gallery_files():
|
| 276 |
+
zipf.write(file, os.path.basename(file))
|
| 277 |
+
st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Assets"), unsafe_allow_html=True)
|
| 278 |
+
with cols[1]:
|
| 279 |
+
if st.button("Zap All! 🗑️"):
|
| 280 |
+
for file in get_gallery_files():
|
| 281 |
+
os.remove(file)
|
| 282 |
+
st.session_state['asset_checkboxes'].clear()
|
| 283 |
+
st.session_state['downloaded_pdfs'].clear()
|
| 284 |
+
st.session_state['cam0_file'] = None
|
| 285 |
+
st.session_state['cam1_file'] = None
|
| 286 |
+
st.sidebar.success("All assets vaporized! 💨")
|
| 287 |
+
st.rerun()
|
| 288 |
+
|
| 289 |
+
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2)
|
| 290 |
+
def update_gallery():
|
| 291 |
+
all_files = get_gallery_files()
|
| 292 |
+
if all_files:
|
| 293 |
+
st.sidebar.subheader("Asset Gallery 📸📖")
|
| 294 |
+
cols = st.sidebar.columns(2)
|
| 295 |
+
for idx, file in enumerate(all_files[:gallery_size * 2]):
|
| 296 |
+
with cols[idx % 2]:
|
| 297 |
+
st.session_state['unique_counter'] += 1
|
| 298 |
+
unique_id = st.session_state['unique_counter']
|
| 299 |
+
if file.endswith('.png'):
|
| 300 |
+
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
|
| 301 |
+
else:
|
| 302 |
+
doc = fitz.open(file)
|
| 303 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 304 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 305 |
+
st.image(img, caption=os.path.basename(file), use_container_width=True)
|
| 306 |
+
doc.close()
|
| 307 |
+
checkbox_key = f"asset_{file}_{unique_id}"
|
| 308 |
+
st.session_state['asset_checkboxes'][file] = st.checkbox(
|
| 309 |
+
"Use for SFT/Input",
|
| 310 |
+
value=st.session_state['asset_checkboxes'].get(file, False),
|
| 311 |
+
key=checkbox_key
|
| 312 |
+
)
|
| 313 |
+
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
|
| 314 |
+
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
|
| 315 |
+
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
|
| 316 |
+
os.remove(file)
|
| 317 |
+
if file in st.session_state['asset_checkboxes']:
|
| 318 |
+
del st.session_state['asset_checkboxes'][file]
|
| 319 |
+
if file.endswith('.pdf'):
|
| 320 |
+
url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == file), None)
|
| 321 |
+
if url_key:
|
| 322 |
+
del st.session_state['downloaded_pdfs'][url_key]
|
| 323 |
+
if file == st.session_state['cam0_file']:
|
| 324 |
+
st.session_state['cam0_file'] = None
|
| 325 |
+
if file == st.session_state['cam1_file']:
|
| 326 |
+
st.session_state['cam1_file'] = None
|
| 327 |
+
st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨")
|
| 328 |
+
st.rerun()
|
| 329 |
+
update_gallery()
|
| 330 |
+
|
| 331 |
+
st.sidebar.subheader("Action Logs 📜")
|
| 332 |
+
log_container = st.sidebar.empty()
|
| 333 |
+
with log_container:
|
| 334 |
+
for record in log_records:
|
| 335 |
+
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
| 336 |
+
|
| 337 |
+
st.sidebar.subheader("History 📜")
|
| 338 |
+
history_container = st.sidebar.empty()
|
| 339 |
+
with history_container:
|
| 340 |
+
for entry in st.session_state['history'][-gallery_size * 2:]:
|
| 341 |
+
st.write(entry)
|
| 342 |
+
|
| 343 |
+
tab1, tab2, tab3, tab4 = st.tabs([
|
| 344 |
+
"Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱"
|
| 345 |
+
])
|
| 346 |
+
|
| 347 |
+
with tab1:
|
| 348 |
+
st.header("Camera Snap 📷")
|
| 349 |
+
st.subheader("Single Capture")
|
| 350 |
+
cols = st.columns(2)
|
| 351 |
+
with cols[0]:
|
| 352 |
+
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
| 353 |
+
if cam0_img:
|
| 354 |
+
filename = generate_filename("cam0")
|
| 355 |
+
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
|
| 356 |
+
os.remove(st.session_state['cam0_file'])
|
| 357 |
+
with open(filename, "wb") as f:
|
| 358 |
+
f.write(cam0_img.getvalue())
|
| 359 |
+
st.session_state['cam0_file'] = filename
|
| 360 |
+
entry = f"Snapshot from Cam 0: {filename}"
|
| 361 |
+
if entry not in st.session_state['history']:
|
| 362 |
+
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
|
| 363 |
+
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
| 364 |
+
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
| 365 |
+
update_gallery()
|
| 366 |
+
elif st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
|
| 367 |
+
st.image(Image.open(st.session_state['cam0_file']), caption="Camera 0", use_container_width=True)
|
| 368 |
+
with cols[1]:
|
| 369 |
+
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
| 370 |
+
if cam1_img:
|
| 371 |
+
filename = generate_filename("cam1")
|
| 372 |
+
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
|
| 373 |
+
os.remove(st.session_state['cam1_file'])
|
| 374 |
+
with open(filename, "wb") as f:
|
| 375 |
+
f.write(cam1_img.getvalue())
|
| 376 |
+
st.session_state['cam1_file'] = filename
|
| 377 |
+
entry = f"Snapshot from Cam 1: {filename}"
|
| 378 |
+
if entry not in st.session_state['history']:
|
| 379 |
+
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
|
| 380 |
+
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
| 381 |
+
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
| 382 |
+
update_gallery()
|
| 383 |
+
elif st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
|
| 384 |
+
st.image(Image.open(st.session_state['cam1_file']), caption="Camera 1", use_container_width=True)
|
| 385 |
+
|
| 386 |
+
with tab2:
|
| 387 |
+
st.header("Download PDFs 📥")
|
| 388 |
+
if st.button("Examples 📚"):
|
| 389 |
+
example_urls = [
|
| 390 |
+
"https://arxiv.org/pdf/2308.03892",
|
| 391 |
+
"https://arxiv.org/pdf/1912.01703",
|
| 392 |
+
"https://arxiv.org/pdf/2408.11039",
|
| 393 |
+
"https://arxiv.org/pdf/2109.10282",
|
| 394 |
+
"https://arxiv.org/pdf/2112.10752",
|
| 395 |
+
"https://arxiv.org/pdf/2308.11236",
|
| 396 |
+
"https://arxiv.org/pdf/1706.03762",
|
| 397 |
+
"https://arxiv.org/pdf/2006.11239",
|
| 398 |
+
"https://arxiv.org/pdf/2305.11207",
|
| 399 |
+
"https://arxiv.org/pdf/2106.09685",
|
| 400 |
+
"https://arxiv.org/pdf/2005.11401",
|
| 401 |
+
"https://arxiv.org/pdf/2106.10504"
|
| 402 |
+
]
|
| 403 |
+
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
| 404 |
+
|
| 405 |
+
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
| 406 |
+
if st.button("Robo-Download 🤖"):
|
| 407 |
+
urls = url_input.strip().split("\n")
|
| 408 |
+
progress_bar = st.progress(0)
|
| 409 |
+
status_text = st.empty()
|
| 410 |
+
total_urls = len(urls)
|
| 411 |
+
existing_pdfs = get_pdf_files()
|
| 412 |
+
for idx, url in enumerate(urls):
|
| 413 |
+
if url:
|
| 414 |
+
output_path = pdf_url_to_filename(url)
|
| 415 |
+
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
|
| 416 |
+
if output_path not in existing_pdfs:
|
| 417 |
+
if download_pdf(url, output_path):
|
| 418 |
+
st.session_state['downloaded_pdfs'][url] = output_path
|
| 419 |
+
logger.info(f"Downloaded PDF from {url} to {output_path}")
|
| 420 |
+
entry = f"Downloaded PDF: {output_path}"
|
| 421 |
+
if entry not in st.session_state['history']:
|
| 422 |
+
st.session_state['history'].append(entry)
|
| 423 |
+
st.session_state['asset_checkboxes'][output_path] = True # Auto-check the box
|
| 424 |
+
else:
|
| 425 |
+
st.error(f"Failed to nab {url} 😿")
|
| 426 |
+
else:
|
| 427 |
+
st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
|
| 428 |
+
st.session_state['downloaded_pdfs'][url] = output_path
|
| 429 |
+
progress_bar.progress((idx + 1) / total_urls)
|
| 430 |
+
status_text.text("Robo-Download complete! 🚀")
|
| 431 |
+
update_gallery()
|
| 432 |
+
|
| 433 |
+
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
| 434 |
+
if st.button("Snapshot Selected 📸"):
|
| 435 |
+
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
| 436 |
+
if selected_pdfs:
|
| 437 |
+
for pdf_path in selected_pdfs:
|
| 438 |
+
mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]
|
| 439 |
+
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
| 440 |
+
for snapshot in snapshots:
|
| 441 |
+
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
| 442 |
+
st.session_state['asset_checkboxes'][snapshot] = True # Auto-check new snapshots
|
| 443 |
+
update_gallery()
|
| 444 |
+
else:
|
| 445 |
+
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar gallery.")
|
| 446 |
+
|
| 447 |
+
with tab3:
|
| 448 |
+
st.header("Test OCR 🔍")
|
| 449 |
+
all_files = get_gallery_files()
|
| 450 |
+
if all_files:
|
| 451 |
+
if st.button("OCR All Assets 🚀"):
|
| 452 |
+
full_text = "# OCR Results\n\n"
|
| 453 |
+
for file in all_files:
|
| 454 |
+
if file.endswith('.png'):
|
| 455 |
+
image = Image.open(file)
|
| 456 |
+
else:
|
| 457 |
+
doc = fitz.open(file)
|
| 458 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 459 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 460 |
+
doc.close()
|
| 461 |
+
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
|
| 462 |
+
result = asyncio.run(process_ocr(image, output_file))
|
| 463 |
+
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
|
| 464 |
+
entry = f"OCR Test: {file} -> {output_file}"
|
| 465 |
+
if entry not in st.session_state['history']:
|
| 466 |
+
st.session_state['history'].append(entry)
|
| 467 |
+
md_output_file = f"full_ocr_{int(time.time())}.md"
|
| 468 |
+
with open(md_output_file, "w") as f:
|
| 469 |
+
f.write(full_text)
|
| 470 |
+
st.success(f"Full OCR saved to {md_output_file}")
|
| 471 |
+
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
|
| 472 |
+
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
|
| 473 |
+
if selected_file:
|
| 474 |
+
if selected_file.endswith('.png'):
|
| 475 |
+
image = Image.open(selected_file)
|
| 476 |
+
else:
|
| 477 |
+
doc = fitz.open(selected_file)
|
| 478 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 479 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 480 |
+
doc.close()
|
| 481 |
+
st.image(image, caption="Input Image", use_container_width=True)
|
| 482 |
+
if st.button("Run OCR 🚀", key="ocr_run"):
|
| 483 |
+
output_file = generate_filename("ocr_output", "txt")
|
| 484 |
+
st.session_state['processing']['ocr'] = True
|
| 485 |
+
result = asyncio.run(process_ocr(image, output_file))
|
| 486 |
+
entry = f"OCR Test: {selected_file} -> {output_file}"
|
| 487 |
+
if entry not in st.session_state['history']:
|
| 488 |
+
st.session_state['history'].append(entry)
|
| 489 |
+
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
| 490 |
+
st.success(f"OCR output saved to {output_file}")
|
| 491 |
+
st.session_state['processing']['ocr'] = False
|
| 492 |
+
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
|
| 493 |
+
doc = fitz.open(selected_file)
|
| 494 |
+
full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
|
| 495 |
+
for i in range(len(doc)):
|
| 496 |
+
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 497 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 498 |
+
output_file = generate_filename(f"ocr_page_{i}", "txt")
|
| 499 |
+
result = asyncio.run(process_ocr(image, output_file))
|
| 500 |
+
full_text += f"## Page {i + 1}\n\n{result}\n\n"
|
| 501 |
+
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
|
| 502 |
+
if entry not in st.session_state['history']:
|
| 503 |
+
st.session_state['history'].append(entry)
|
| 504 |
+
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
|
| 505 |
+
with open(md_output_file, "w") as f:
|
| 506 |
+
f.write(full_text)
|
| 507 |
+
st.success(f"Full OCR saved to {md_output_file}")
|
| 508 |
+
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
|
| 509 |
+
else:
|
| 510 |
+
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
|
| 511 |
+
|
| 512 |
+
with tab4:
|
| 513 |
+
st.header("Build Titan 🌱")
|
| 514 |
+
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
| 515 |
+
base_model = st.selectbox("Select Tiny Model",
|
| 516 |
+
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
|
| 517 |
+
["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
|
| 518 |
+
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
| 519 |
+
domain = st.text_input("Target Domain", "general")
|
| 520 |
+
if st.button("Download Model ⬇️"):
|
| 521 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
|
| 522 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
| 523 |
+
builder.load_model(base_model, config)
|
| 524 |
+
builder.save_model(config.model_path)
|
| 525 |
+
st.session_state['builder'] = builder
|
| 526 |
+
st.session_state['model_loaded'] = True
|
| 527 |
+
st.session_state['selected_model_type'] = model_type
|
| 528 |
+
st.session_state['selected_model'] = config.model_path
|
| 529 |
+
entry = f"Built {model_type} model: {model_name}"
|
| 530 |
+
if entry not in st.session_state['history']:
|
| 531 |
+
st.session_state['history'].append(entry)
|
| 532 |
+
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
|
| 533 |
+
st.rerun()
|
| 534 |
+
|
| 535 |
+
tab5 = st.tabs(["Test Image Gen 🎨"])[0]
|
| 536 |
+
with tab5:
|
| 537 |
+
st.header("Test Image Gen 🎨")
|
| 538 |
+
all_files = get_gallery_files()
|
| 539 |
+
if all_files:
|
| 540 |
+
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
|
| 541 |
+
if selected_file:
|
| 542 |
+
if selected_file.endswith('.png'):
|
| 543 |
+
image = Image.open(selected_file)
|
| 544 |
+
else:
|
| 545 |
+
doc = fitz.open(selected_file)
|
| 546 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 547 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 548 |
+
doc.close()
|
| 549 |
+
st.image(image, caption="Reference Image", use_container_width=True)
|
| 550 |
+
prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
|
| 551 |
+
if st.button("Run Image Gen 🚀", key="gen_run"):
|
| 552 |
+
output_file = generate_filename("gen_output", "png")
|
| 553 |
+
st.session_state['processing']['gen'] = True
|
| 554 |
+
result = asyncio.run(process_image_gen(prompt, output_file))
|
| 555 |
+
entry = f"Image Gen Test: {prompt} -> {output_file}"
|
| 556 |
+
if entry not in st.session_state['history']:
|
| 557 |
+
st.session_state['history'].append(entry)
|
| 558 |
+
st.image(result, caption="Generated Image", use_container_width=True)
|
| 559 |
+
st.success(f"Image saved to {output_file}")
|
| 560 |
+
st.session_state['processing']['gen'] = False
|
| 561 |
+
else:
|
| 562 |
+
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
|
| 563 |
+
|
| 564 |
+
update_gallery()
|