Spaces:
Running
Running
| from einops import rearrange | |
| import numpy as np | |
| import torch | |
| from torch import Tensor | |
| from roma import rotmat_to_rotvec, rotvec_to_rotmat | |
| from torch.nn.functional import pad | |
| # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | |
| # Check PYTORCH3D_LICENCE before use | |
| import functools | |
| from typing import Optional | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| import torch | |
| from einops import rearrange | |
| def rotate_trajectory(traj, rotZ, inverse=False): | |
| ''' | |
| Rotate the trajectory of a given body | |
| ''' | |
| if inverse: | |
| # transpose | |
| rotZ = rearrange(rotZ, "... i j -> ... j i") | |
| vel = torch.diff(traj, dim=-2) | |
| # 0 for the first one => keep the dimentionality | |
| vel = torch.cat((0 * vel[..., [0], :], vel), dim=-2) | |
| vel_local = torch.einsum("...kj,...k->...j", rotZ[..., :2, :2], vel[..., :2]) | |
| # Integrate the trajectory | |
| traj_local = torch.cumsum(vel_local, dim=-2) | |
| # First frame should be the same as before | |
| traj_local = traj_local - traj_local[..., [0], :] + traj[..., [0], :] | |
| return traj_local | |
| def rotate_trans(trans, rotZ, inverse=False): | |
| ''' | |
| Rotate the translation of a given body | |
| ''' | |
| traj = trans[..., :2] | |
| transZ = trans[..., 2] | |
| traj_local = rotate_trajectory(traj, rotZ, inverse=inverse) | |
| trans_local = torch.cat((traj_local, transZ[..., None]), axis=-1) | |
| return trans_local | |
| def rotate_body_degrees(rots, trans, offset=0.0): | |
| """ | |
| Rotate the whole body | |
| """ | |
| # rots, trans = data.rots.clone(), data.trans.clone() | |
| global_poses = rots[..., 0, :, :] | |
| global_euler = matrix_to_euler_angles(global_poses, "ZYX") | |
| anglesZ, anglesY, anglesX = torch.unbind(global_euler, -1) | |
| rotZ = _axis_angle_rotation("Z", anglesZ) | |
| diff_mat_rotZ = rotZ[..., 1:, :, :] @ rotZ.transpose(-1, -2)[..., :-1, :, :] | |
| vel_anglesZ = matrix_to_axis_angle(diff_mat_rotZ)[..., 2] | |
| # padding "same" | |
| vel_anglesZ = torch.cat((vel_anglesZ[..., [0]], vel_anglesZ), dim=-1) | |
| # canonicalizing here | |
| new_anglesZ = torch.cumsum(vel_anglesZ, -1) + offset | |
| new_rotZ = _axis_angle_rotation("Z", new_anglesZ) | |
| new_global_euler = torch.stack((new_anglesZ, anglesY, anglesX), -1) | |
| new_global_orient = euler_angles_to_matrix(new_global_euler, "ZYX") | |
| rots[:, 0] = new_global_orient | |
| trans = rotate_trans(trans, rotZ[0], inverse=False) | |
| trans = rotate_trans(trans, new_rotZ[0], inverse=True) | |
| # trans = rotate_trans(trans, rotZ[0], inverse=True) | |
| # from sinc.transforms.smpl import RotTransDatastruct | |
| # return RotTransDatastruct(rots=rots, trans=trans) | |
| return rots, trans | |
| """ | |
| The transformation matrices returned from the functions in this file assume | |
| the points on which the transformation will be applied are column vectors. | |
| i.e. the R matrix is structured as | |
| R = [ | |
| [Rxx, Rxy, Rxz], | |
| [Ryx, Ryy, Ryz], | |
| [Rzx, Rzy, Rzz], | |
| ] # (3, 3) | |
| This matrix can be applied to column vectors by post multiplication | |
| by the points e.g. | |
| points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point | |
| transformed_points = R * points | |
| To apply the same matrix to points which are row vectors, the R matrix | |
| can be transposed and pre multiplied by the points: | |
| e.g. | |
| points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point | |
| transformed_points = points * R.transpose(1, 0) | |
| """ | |
| # Added | |
| def matrix_of_angles(cos, sin, inv=False, dim=2): | |
| assert dim in [2, 3] | |
| sin = -sin if inv else sin | |
| if dim == 2: | |
| row1 = torch.stack((cos, -sin), axis=-1) | |
| row2 = torch.stack((sin, cos), axis=-1) | |
| return torch.stack((row1, row2), axis=-2) | |
| elif dim == 3: | |
| row1 = torch.stack((cos, -sin, 0*cos), axis=-1) | |
| row2 = torch.stack((sin, cos, 0*cos), axis=-1) | |
| row3 = torch.stack((0*sin, 0*cos, 1+0*cos), axis=-1) | |
| return torch.stack((row1, row2, row3),axis=-2) | |
| def quaternion_to_matrix(quaternions): | |
| """ | |
| Convert rotations given as quaternions to rotation matrices. | |
| Args: | |
| quaternions: quaternions with real part first, | |
| as tensor of shape (..., 4). | |
| Returns: | |
| Rotation matrices as tensor of shape (..., 3, 3). | |
| """ | |
| r, i, j, k = torch.unbind(quaternions, -1) | |
| two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
| o = torch.stack( | |
| ( | |
| 1 - two_s * (j * j + k * k), | |
| two_s * (i * j - k * r), | |
| two_s * (i * k + j * r), | |
| two_s * (i * j + k * r), | |
| 1 - two_s * (i * i + k * k), | |
| two_s * (j * k - i * r), | |
| two_s * (i * k - j * r), | |
| two_s * (j * k + i * r), | |
| 1 - two_s * (i * i + j * j), | |
| ), | |
| -1, | |
| ) | |
| return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
| def _copysign(a, b): | |
| """ | |
| Return a tensor where each element has the absolute value taken from the, | |
| corresponding element of a, with sign taken from the corresponding | |
| element of b. This is like the standard copysign floating-point operation, | |
| but is not careful about negative 0 and NaN. | |
| Args: | |
| a: source tensor. | |
| b: tensor whose signs will be used, of the same shape as a. | |
| Returns: | |
| Tensor of the same shape as a with the signs of b. | |
| """ | |
| signs_differ = (a < 0) != (b < 0) | |
| return torch.where(signs_differ, -a, a) | |
| def _sqrt_positive_part(x): | |
| """ | |
| Returns torch.sqrt(torch.max(0, x)) | |
| but with a zero subgradient where x is 0. | |
| """ | |
| ret = torch.zeros_like(x) | |
| positive_mask = x > 0 | |
| ret[positive_mask] = torch.sqrt(x[positive_mask]) | |
| return ret | |
| def matrix_to_quaternion(matrix): | |
| """ | |
| Convert rotations given as rotation matrices to quaternions. | |
| Args: | |
| matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
| Returns: | |
| quaternions with real part first, as tensor of shape (..., 4). | |
| """ | |
| if isinstance(matrix, np.ndarray): | |
| matrix = torch.from_numpy(matrix) | |
| if matrix.shape[-1] != 3 or matrix.shape[-2] != 3: | |
| raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") | |
| m00 = matrix[..., 0, 0] | |
| m11 = matrix[..., 1, 1] | |
| m22 = matrix[..., 2, 2] | |
| o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22) | |
| x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22) | |
| y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22) | |
| z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22) | |
| o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2]) | |
| o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0]) | |
| o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1]) | |
| return torch.stack((o0, o1, o2, o3), -1) | |
| def _axis_angle_rotation(axis: str, angle): | |
| """ | |
| Return the rotation matrices for one of the rotations about an axis | |
| of which Euler angles describe, for each value of the angle given. | |
| Args: | |
| axis: Axis label "X" or "Y or "Z". | |
| angle: any shape tensor of Euler angles in radians | |
| Returns: | |
| Rotation matrices as tensor of shape (..., 3, 3). | |
| """ | |
| cos = torch.cos(angle) | |
| sin = torch.sin(angle) | |
| one = torch.ones_like(angle) | |
| zero = torch.zeros_like(angle) | |
| if axis == "X": | |
| R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
| if axis == "Y": | |
| R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
| if axis == "Z": | |
| R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
| return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
| def euler_angles_to_matrix(euler_angles, convention: str): | |
| """ | |
| Convert rotations given as Euler angles in radians to rotation matrices. | |
| Args: | |
| euler_angles: Euler angles in radians as tensor of shape (..., 3). | |
| convention: Convention string of three uppercase letters from | |
| {"X", "Y", and "Z"}. | |
| Returns: | |
| Rotation matrices as tensor of shape (..., 3, 3). | |
| """ | |
| if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: | |
| raise ValueError("Invalid input euler angles.") | |
| if len(convention) != 3: | |
| raise ValueError("Convention must have 3 letters.") | |
| if convention[1] in (convention[0], convention[2]): | |
| raise ValueError(f"Invalid convention {convention}.") | |
| for letter in convention: | |
| if letter not in ("X", "Y", "Z"): | |
| raise ValueError(f"Invalid letter {letter} in convention string.") | |
| matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1)) | |
| return functools.reduce(torch.matmul, matrices) | |
| def _angle_from_tan( | |
| axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool | |
| ): | |
| """ | |
| Extract the first or third Euler angle from the two members of | |
| the matrix which are positive constant times its sine and cosine. | |
| Args: | |
| axis: Axis label "X" or "Y or "Z" for the angle we are finding. | |
| other_axis: Axis label "X" or "Y or "Z" for the middle axis in the | |
| convention. | |
| data: Rotation matrices as tensor of shape (..., 3, 3). | |
| horizontal: Whether we are looking for the angle for the third axis, | |
| which means the relevant entries are in the same row of the | |
| rotation matrix. If not, they are in the same column. | |
| tait_bryan: Whether the first and third axes in the convention differ. | |
| Returns: | |
| Euler Angles in radians for each matrix in data as a tensor | |
| of shape (...). | |
| """ | |
| i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] | |
| if horizontal: | |
| i2, i1 = i1, i2 | |
| even = (axis + other_axis) in ["XY", "YZ", "ZX"] | |
| if horizontal == even: | |
| return torch.atan2(data[..., i1], data[..., i2]) | |
| if tait_bryan: | |
| return torch.atan2(-data[..., i2], data[..., i1]) | |
| return torch.atan2(data[..., i2], -data[..., i1]) | |
| def _index_from_letter(letter: str): | |
| if letter == "X": | |
| return 0 | |
| if letter == "Y": | |
| return 1 | |
| if letter == "Z": | |
| return 2 | |
| def matrix_to_euler_angles(matrix, convention: str): | |
| """ | |
| Convert rotations given as rotation matrices to Euler angles in radians. | |
| Args: | |
| matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
| convention: Convention string of three uppercase letters. | |
| Returns: | |
| Euler angles in radians as tensor of shape (..., 3). | |
| """ | |
| if len(convention) != 3: | |
| raise ValueError("Convention must have 3 letters.") | |
| if convention[1] in (convention[0], convention[2]): | |
| raise ValueError(f"Invalid convention {convention}.") | |
| for letter in convention: | |
| if letter not in ("X", "Y", "Z"): | |
| raise ValueError(f"Invalid letter {letter} in convention string.") | |
| if matrix.shape[-1] != 3 or matrix.shape[-2] != 3: | |
| raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") | |
| i0 = _index_from_letter(convention[0]) | |
| i2 = _index_from_letter(convention[2]) | |
| tait_bryan = i0 != i2 | |
| if tait_bryan: | |
| central_angle = torch.asin( | |
| matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) | |
| ) | |
| else: | |
| central_angle = torch.acos(matrix[..., i0, i0]) | |
| o = ( | |
| _angle_from_tan( | |
| convention[0], convention[1], matrix[..., i2], False, tait_bryan | |
| ), | |
| central_angle, | |
| _angle_from_tan( | |
| convention[2], convention[1], matrix[..., i0, :], True, tait_bryan | |
| ), | |
| ) | |
| return torch.stack(o, -1) | |
| def random_quaternions( | |
| n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False | |
| ): | |
| """ | |
| Generate random quaternions representing rotations, | |
| i.e. versors with nonnegative real part. | |
| Args: | |
| n: Number of quaternions in a batch to return. | |
| dtype: Type to return. | |
| device: Desired device of returned tensor. Default: | |
| uses the current device for the default tensor type. | |
| requires_grad: Whether the resulting tensor should have the gradient | |
| flag set. | |
| Returns: | |
| Quaternions as tensor of shape (N, 4). | |
| """ | |
| o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad) | |
| s = (o * o).sum(1) | |
| o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None] | |
| return o | |
| def random_rotations( | |
| n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False | |
| ): | |
| """ | |
| Generate random rotations as 3x3 rotation matrices. | |
| Args: | |
| n: Number of rotation matrices in a batch to return. | |
| dtype: Type to return. | |
| device: Device of returned tensor. Default: if None, | |
| uses the current device for the default tensor type. | |
| requires_grad: Whether the resulting tensor should have the gradient | |
| flag set. | |
| Returns: | |
| Rotation matrices as tensor of shape (n, 3, 3). | |
| """ | |
| quaternions = random_quaternions( | |
| n, dtype=dtype, device=device, requires_grad=requires_grad | |
| ) | |
| return quaternion_to_matrix(quaternions) | |
| def random_rotation( | |
| dtype: Optional[torch.dtype] = None, device=None, requires_grad=False | |
| ): | |
| """ | |
| Generate a single random 3x3 rotation matrix. | |
| Args: | |
| dtype: Type to return | |
| device: Device of returned tensor. Default: if None, | |
| uses the current device for the default tensor type | |
| requires_grad: Whether the resulting tensor should have the gradient | |
| flag set | |
| Returns: | |
| Rotation matrix as tensor of shape (3, 3). | |
| """ | |
| return random_rotations(1, dtype, device, requires_grad)[0] | |
| def standardize_quaternion(quaternions): | |
| """ | |
| Convert a unit quaternion to a standard form: one in which the real | |
| part is non negative. | |
| Args: | |
| quaternions: Quaternions with real part first, | |
| as tensor of shape (..., 4). | |
| Returns: | |
| Standardized quaternions as tensor of shape (..., 4). | |
| """ | |
| return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) | |
| def quaternion_raw_multiply(a, b): | |
| """ | |
| Multiply two quaternions. | |
| Usual torch rules for broadcasting apply. | |
| Args: | |
| a: Quaternions as tensor of shape (..., 4), real part first. | |
| b: Quaternions as tensor of shape (..., 4), real part first. | |
| Returns: | |
| The product of a and b, a tensor of quaternions shape (..., 4). | |
| """ | |
| aw, ax, ay, az = torch.unbind(a, -1) | |
| bw, bx, by, bz = torch.unbind(b, -1) | |
| ow = aw * bw - ax * bx - ay * by - az * bz | |
| ox = aw * bx + ax * bw + ay * bz - az * by | |
| oy = aw * by - ax * bz + ay * bw + az * bx | |
| oz = aw * bz + ax * by - ay * bx + az * bw | |
| return torch.stack((ow, ox, oy, oz), -1) | |
| def quaternion_multiply(a, b): | |
| """ | |
| Multiply two quaternions representing rotations, returning the quaternion | |
| representing their composition, i.e. the versor with nonnegative real part. | |
| Usual torch rules for broadcasting apply. | |
| Args: | |
| a: Quaternions as tensor of shape (..., 4), real part first. | |
| b: Quaternions as tensor of shape (..., 4), real part first. | |
| Returns: | |
| The product of a and b, a tensor of quaternions of shape (..., 4). | |
| """ | |
| ab = quaternion_raw_multiply(a, b) | |
| return standardize_quaternion(ab) | |
| def quaternion_invert(quaternion): | |
| """ | |
| Given a quaternion representing rotation, get the quaternion representing | |
| its inverse. | |
| Args: | |
| quaternion: Quaternions as tensor of shape (..., 4), with real part | |
| first, which must be versors (unit quaternions). | |
| Returns: | |
| The inverse, a tensor of quaternions of shape (..., 4). | |
| """ | |
| return quaternion * quaternion.new_tensor([1, -1, -1, -1]) | |
| def quaternion_apply(quaternion, point): | |
| """ | |
| Apply the rotation given by a quaternion to a 3D point. | |
| Usual torch rules for broadcasting apply. | |
| Args: | |
| quaternion: Tensor of quaternions, real part first, of shape (..., 4). | |
| point: Tensor of 3D points of shape (..., 3). | |
| Returns: | |
| Tensor of rotated points of shape (..., 3). | |
| """ | |
| if point.shape[-1] != 3: | |
| raise ValueError(f"Points are not in 3D, f{point.shape}.") | |
| real_parts = point.new_zeros(point.shape[:-1] + (1,)) | |
| point_as_quaternion = torch.cat((real_parts, point), -1) | |
| out = quaternion_raw_multiply( | |
| quaternion_raw_multiply(quaternion, point_as_quaternion), | |
| quaternion_invert(quaternion), | |
| ) | |
| return out[..., 1:] | |
| def axis_angle_to_matrix(axis_angle): | |
| """ | |
| Convert rotations given as axis/angle to rotation matrices. | |
| Args: | |
| axis_angle: Rotations given as a vector in axis angle form, | |
| as a tensor of shape (..., 3), where the magnitude is | |
| the angle turned anticlockwise in radians around the | |
| vector's direction. | |
| Returns: | |
| Rotation matrices as tensor of shape (..., 3, 3). | |
| """ | |
| return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
| def matrix_to_axis_angle(matrix): | |
| """ | |
| Convert rotations given as rotation matrices to axis/angle. | |
| Args: | |
| matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
| Returns: | |
| Rotations given as a vector in axis angle form, as a tensor | |
| of shape (..., 3), where the magnitude is the angle | |
| turned anticlockwise in radians around the vector's | |
| direction. | |
| """ | |
| return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) | |
| def axis_angle_to_quaternion(axis_angle): | |
| """ | |
| Convert rotations given as axis/angle to quaternions. | |
| Args: | |
| axis_angle: Rotations given as a vector in axis angle form, | |
| as a tensor of shape (..., 3), where the magnitude is | |
| the angle turned anticlockwise in radians around the | |
| vector's direction. | |
| Returns: | |
| quaternions with real part first, as tensor of shape (..., 4). | |
| """ | |
| angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
| half_angles = 0.5 * angles | |
| eps = 1e-6 | |
| small_angles = angles.abs() < eps | |
| sin_half_angles_over_angles = torch.empty_like(angles) | |
| try: | |
| sin_half_angles_over_angles[~small_angles] = ( | |
| torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
| ) | |
| except: | |
| torch.save(axis_angle, f'before_convert_axis_angle.pt') | |
| # for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
| # so sin(x/2)/x is about 1/2 - (x*x)/48 | |
| sin_half_angles_over_angles[small_angles] = ( | |
| 0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
| ) | |
| quaternions = torch.cat( | |
| [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 | |
| ) | |
| return quaternions | |
| def quaternion_to_axis_angle(quaternions): | |
| """ | |
| Convert rotations given as quaternions to axis/angle. | |
| Args: | |
| quaternions: quaternions with real part first, | |
| as tensor of shape (..., 4). | |
| Returns: | |
| Rotations given as a vector in axis angle form, as a tensor | |
| of shape (..., 3), where the magnitude is the angle | |
| turned anticlockwise in radians around the vector's | |
| direction. | |
| """ | |
| norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) | |
| half_angles = torch.atan2(norms, quaternions[..., :1]) | |
| angles = 2 * half_angles | |
| eps = 1e-6 | |
| small_angles = angles.abs() < eps | |
| sin_half_angles_over_angles = torch.empty_like(angles) | |
| sin_half_angles_over_angles[~small_angles] = ( | |
| torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
| ) | |
| # for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
| # so sin(x/2)/x is about 1/2 - (x*x)/48 | |
| sin_half_angles_over_angles[small_angles] = ( | |
| 0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
| ) | |
| return quaternions[..., 1:] / sin_half_angles_over_angles | |
| def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Converts 6D rotation representation by Zhou et al. [1] to rotation matrix | |
| using Gram--Schmidt orthogonalisation per Section B of [1]. | |
| Args: | |
| d6: 6D rotation representation, of size (*, 6) | |
| Returns: | |
| batch of rotation matrices of size (*, 3, 3) | |
| [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
| On the Continuity of Rotation Representations in Neural Networks. | |
| IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
| Retrieved from http://arxiv.org/abs/1812.07035 | |
| """ | |
| a1, a2 = d6[..., :3], d6[..., 3:] | |
| b1 = F.normalize(a1, dim=-1) | |
| b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 | |
| b2 = F.normalize(b2, dim=-1) | |
| b3 = torch.cross(b1, b2, dim=-1) | |
| return torch.stack((b1, b2, b3), dim=-2) | |
| def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Converts rotation matrices to 6D rotation representation by Zhou et al. [1] | |
| by dropping the last row. Note that 6D representation is not unique. | |
| Args: | |
| matrix: batch of rotation matrices of size (*, 3, 3) | |
| Returns: | |
| 6D rotation representation, of size (*, 6) | |
| [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
| On the Continuity of Rotation Representations in Neural Networks. | |
| IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
| Retrieved from http://arxiv.org/abs/1812.07035 | |
| """ | |
| return matrix[..., :2, :].clone().reshape(*matrix.shape[:-2], 6) | |
| def rotate_trajectory(traj, rotZ, inverse=False): | |
| if inverse: | |
| # transpose | |
| rotZ = rearrange(rotZ, "... i j -> ... j i") | |
| vel = torch.diff(traj, dim=-2) | |
| # 0 for the first one => keep the dimentionality | |
| vel = torch.cat((0 * vel[..., [0], :], vel), dim=-2) | |
| vel_local = torch.einsum("...kj,...k->...j", rotZ[..., :2, :2], vel[..., :2]) | |
| # Integrate the trajectory | |
| traj_local = torch.cumsum(vel_local, dim=-2) | |
| # First frame should be the same as before | |
| traj_local = traj_local - traj_local[..., [0], :] + traj[..., [0], :] | |
| return traj_local | |
| def rotate_trans(trans, rotZ, inverse=False): | |
| traj = trans[..., :2] | |
| transZ = trans[..., 2] | |
| traj_local = rotate_trajectory(traj, rotZ, inverse=inverse) | |
| trans_local = torch.cat((traj_local, transZ[..., None]), axis=-1) | |
| return trans_local | |
| def canonicalize_rotations(global_orient, trans, angle=torch.pi/4): | |
| global_euler = matrix_to_euler_angles(global_orient, "ZYX") | |
| anglesZ, anglesY, anglesX = torch.unbind(global_euler, -1) | |
| rotZ = _axis_angle_rotation("Z", anglesZ) | |
| # remove the current rotation | |
| # make it local | |
| local_trans = rotate_trans(trans, rotZ) | |
| # For information: | |
| # rotate_joints(joints, rotZ) == joints_local | |
| diff_mat_rotZ = rotZ[..., 1:, :, :] @ rotZ.transpose(-1, -2)[..., :-1, :, :] | |
| vel_anglesZ = matrix_to_axis_angle(diff_mat_rotZ)[..., 2] | |
| # padding "same" | |
| vel_anglesZ = torch.cat((vel_anglesZ[..., [0]], vel_anglesZ), dim=-1) | |
| # Compute new rotation: | |
| # canonicalized | |
| anglesZ = torch.cumsum(vel_anglesZ, -1) | |
| anglesZ += angle | |
| rotZ = _axis_angle_rotation("Z", anglesZ) | |
| new_trans = rotate_trans(local_trans, rotZ, inverse=True) | |
| new_global_euler = torch.stack((anglesZ, anglesY, anglesX), -1) | |
| new_global_orient = euler_angles_to_matrix(new_global_euler, "ZYX") | |
| return new_global_orient, new_trans | |
| def rotate_motion_canonical(rotations, translation, transl_zero=True): | |
| """ | |
| Must be of shape S x (Jx3) | |
| """ | |
| rots_motion = rotations | |
| trans_motion = translation | |
| datum_len = rotations.shape[0] | |
| rots_motion_rotmat = transform_body_pose(rots_motion.reshape(datum_len, | |
| -1, 3), | |
| 'aa->rot') | |
| orient_R_can, trans_can = canonicalize_rotations(rots_motion_rotmat[:, | |
| 0], | |
| trans_motion) | |
| rots_motion_rotmat_can = rots_motion_rotmat | |
| rots_motion_rotmat_can[:, 0] = orient_R_can | |
| rots_motion_aa_can = transform_body_pose(rots_motion_rotmat_can, | |
| 'rot->aa') | |
| rots_motion_aa_can = rearrange(rots_motion_aa_can, 'F J d -> F (J d)', | |
| d=3) | |
| if transl_zero: | |
| translation_can = trans_can - trans_can[0] | |
| else: | |
| translation_can = trans_can | |
| return rots_motion_aa_can, translation_can | |
| def transform_body_pose(pose, formats): | |
| """ | |
| various angle transformations, transforms input to torch.Tensor | |
| input: | |
| - pose: pose tensor | |
| - formats: string denoting the input-output angle format | |
| """ | |
| if isinstance(pose, np.ndarray): | |
| pose = torch.from_numpy(pose) | |
| if formats == "6d->aa": | |
| j = pose.shape[-1] / 6 | |
| pose = rearrange(pose, '... (j d) -> ... j d', d=6) | |
| pose = pose.squeeze(-2) # in case of only one angle | |
| pose = rotation_6d_to_matrix(pose) | |
| pose = matrix_to_axis_angle(pose) | |
| if j > 1: | |
| pose = rearrange(pose, '... j d -> ... (j d)') | |
| elif formats == "aa->6d": | |
| j = pose.shape[-1] / 3 | |
| pose = rearrange(pose, '... (j c) -> ... j c', c=3) | |
| pose = pose.squeeze(-2) # in case of only one angle | |
| # axis-angle to rotation matrix & drop last row | |
| pose = matrix_to_rotation_6d(axis_angle_to_matrix(pose)) | |
| if j > 1: | |
| pose = rearrange(pose, '... j d -> ... (j d)') | |
| elif formats == "aa->rot": | |
| j = pose.shape[-1] / 3 | |
| pose = rearrange(pose, '... (j c) -> ... j c', c=3) | |
| pose = pose.squeeze(-2) # in case of only one angle | |
| # axis-angle to rotation matrix & drop last row | |
| pose = torch.clamp(axis_angle_to_matrix(pose), min=-1.0, max=1.0) | |
| elif formats == "6d->rot": | |
| j = pose.shape[-1] / 6 | |
| pose = rearrange(pose, '... (j d) -> ... j d', d=6) | |
| pose = pose.squeeze(-2) # in case of only one angle | |
| pose = torch.clamp(rotation_6d_to_matrix(pose), min=-1.0, max=1.0) | |
| elif formats == "rot->aa": | |
| # pose = rearrange(pose, '... (j d1 d2) -> ... j d1 d2', d1=3, d2=3) | |
| pose = matrix_to_axis_angle(pose) | |
| elif formats == "rot->6d": | |
| # pose = rearrange(pose, '... (j d1 d2) -> ... j d1 d2', d1=3, d2=3) | |
| pose = matrix_to_rotation_6d(pose) | |
| else: | |
| raise ValueError(f"specified conversion format is invalid: {formats}") | |
| return pose | |
| def apply_rot_delta(rots, deltas, in_format="6d", out_format="6d"): | |
| """ | |
| rots needs to have same dimentionality as delta | |
| """ | |
| assert rots.shape == deltas.shape | |
| if in_format == "aa": | |
| j = rots.shape[-1] / 3 | |
| elif in_format == "6d": | |
| j = rots.shape[-1] / 6 | |
| else: | |
| raise ValueError(f"specified conversion format is unsupported: {in_format}") | |
| rots = transform_body_pose(rots, f"{in_format}->rot") | |
| deltas = transform_body_pose(deltas, f"{in_format}->rot") | |
| new_rots = torch.einsum("...ij,...jk->...ik", rots, deltas) # Ri+1=Ri@delta | |
| new_rots = transform_body_pose(new_rots, f"rot->{out_format}") | |
| if j > 1: | |
| new_rots = rearrange(new_rots, '... j d -> ... (j d)') | |
| return new_rots | |
| def rot_diff(rots1, rots2=None, in_format="6d", out_format="6d"): | |
| """ | |
| dim 0 is considered to be the time dimention, this is where the shift will happen | |
| """ | |
| self_diff = False | |
| if in_format == "aa": | |
| j = rots1.shape[-1] / 3 | |
| elif in_format == "6d": | |
| j = rots1.shape[-1] / 6 | |
| else: | |
| raise ValueError(f"specified conversion format is unsupported: {in_format}") | |
| rots1 = transform_body_pose(rots1, f"{in_format}->rot") | |
| if rots2 is not None: | |
| rots2 = transform_body_pose(rots2, f"{in_format}->rot") | |
| else: | |
| self_diff = True | |
| rots2 = rots1 | |
| rots1 = rots1.roll(1, 0) | |
| rots_diff = torch.einsum("...ij,...ik->...jk", rots1, rots2) # Ri.T@R_i+1 | |
| if self_diff: | |
| rots_diff[0, ..., :, :] = torch.eye(3, device=rots1.device) | |
| rots_diff = transform_body_pose(rots_diff, f"rot->{out_format}") | |
| if j > 1: | |
| rots_diff = rearrange(rots_diff, '... j d -> ... (j d)') | |
| return rots_diff | |
| def change_for(p, R, T=0, forward=True): | |
| """ | |
| Change frame of reference for vector p | |
| p: vector in original coordinate frame | |
| R: rotation matrix of new coordinate frame ([x, y, z] format) | |
| T: translation of new coordinate frame | |
| Let angle R by a. | |
| forward: rotates the coordinate frame by -a (True) or rotate the point | |
| by +a. | |
| """ | |
| if forward: # R.T @ (p_global - pelvis_translation) | |
| return torch.einsum('...di,...d->...i', R, p - T) | |
| else: # R @ (p_global - pelvis_translation) | |
| return torch.einsum('...di,...i->...d', R, p) + T | |
| def get_z_rot(rot_, in_format="6d"): | |
| rot = rot_.clone().detach() | |
| rot = transform_body_pose(rot, f"{in_format}->rot") | |
| euler_z = matrix_to_euler_angles(rot, "ZYX") | |
| euler_z[..., 1:] = 0.0 | |
| z_rot = torch.clamp( | |
| euler_angles_to_matrix(euler_z, "ZYX"), | |
| min=-1.0, max=1.0) # add zero XY euler angles | |
| return z_rot | |
| def remove_z_rot(pose, in_format="6d", out_format="6d"): | |
| """ | |
| zero-out the global orientation around Z axis | |
| """ | |
| assert out_format == "6d" | |
| if isinstance(pose, np.ndarray): | |
| pose = torch.from_numpy(pose) | |
| # transform to matrix | |
| pose = transform_body_pose(pose, f"{in_format}->rot") | |
| pose = matrix_to_euler_angles(pose, "ZYX") | |
| pose[..., 0] = 0 | |
| pose = matrix_to_rotation_6d(torch.clamp( | |
| euler_angles_to_matrix(pose, "ZYX"), | |
| min=-1.0, max=1.0)) | |
| return pose | |
| def local_to_global_orient(body_orient: Tensor, poses: Tensor, parents: list, | |
| input_format='aa', output_format='aa'): | |
| """ | |
| Modified from aitviewer | |
| Convert relative joint angles to global by unrolling the kinematic chain. | |
| This function is fully differentiable ;) | |
| :param poses: A tensor of shape (N, N_JOINTS*d) defining the relative poses in angle-axis format. | |
| :param parents: A list of parents for each joint j, i.e. parent[j] is the parent of joint j. | |
| :param output_format: 'aa' for axis-angle or 'rotmat' for rotation matrices. | |
| :param input_format: 'aa' or 'rotmat' ... | |
| :return: The global joint angles as a tensor of shape (N, N_JOINTS*DOF). | |
| """ | |
| assert output_format in ['aa', 'rotmat'] | |
| assert input_format in ['aa', 'rotmat'] | |
| dof = 3 if input_format == 'aa' else 9 | |
| n_joints = poses.shape[-1] // dof + 1 | |
| if input_format == 'aa': | |
| body_orient = rotvec_to_rotmat(body_orient) | |
| local_oris = rotvec_to_rotmat(rearrange(poses, '... (j d) -> ... j d', d=3)) | |
| local_oris = torch.cat((body_orient[..., None, :, :], local_oris), dim=-3) | |
| else: | |
| # this part has not been tested | |
| local_oris = torch.cat((body_orient[..., None, :, :], local_oris), dim=-3) | |
| global_oris_ = [] | |
| # Apply the chain rule starting from the pelvis | |
| for j in range(n_joints): | |
| if parents[j] < 0: | |
| # root | |
| global_oris_.append(local_oris[..., j, :, :]) | |
| else: | |
| parent_rot = global_oris_[parents[j]] | |
| local_rot = local_oris[..., j, :, :] | |
| global_oris_.append(torch.einsum('...ij,...jk->...ik', parent_rot, local_rot)) | |
| # global_oris[..., j, :, :] = torch.bmm(parent_rot, local_rot) | |
| global_oris = torch.stack(global_oris_, dim=1) | |
| # global_oris: ... x J x 3 x 3 | |
| # account for the body's root orientation | |
| # global_oris = torch.einsum('...ij,...jk->...ik', body_orient[..., None, :, :], global_oris) | |
| if output_format == 'aa': | |
| return rotmat_to_rotvec(global_oris) | |
| # res = global_oris.reshape((-1, n_joints * 3)) | |
| else: | |
| return global_oris | |
| # return res |