Spaces:
Sleeping
Sleeping
Aryan Wadhawan
commited on
Commit
·
e25c52f
1
Parent(s):
f561f73
B64
Browse files- .history/app_20230718132721.py +0 -0
- .history/app_20230718133117.py +24 -0
- .history/app_20230718133128.py +24 -0
- .history/app_20230718133340.py +32 -0
- .history/app_20230718133558.py +33 -0
- .history/app_20230718133701.py +36 -0
- .history/app_20230718133728.py +38 -0
- .history/app_20230718134339.py +38 -0
- .history/packages_20230718132731.txt +0 -0
- .history/packages_20230718132746.txt +0 -0
- .history/packages_20230718132842.txt +1 -0
- .history/requirements_20230718132726.txt +0 -0
- .history/requirements_20230718132835.txt +4 -0
- .history/requirements_20230718133331.txt +5 -0
- .history/requirements_20230718134813.txt +4 -0
- .history/requirements_20230718134828.txt +4 -0
- .vscode/settings.json +6 -0
- requirements.txt +1 -2
.history/app_20230718132721.py
ADDED
|
File without changes
|
.history/app_20230718133117.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 3 |
+
import torch
|
| 4 |
+
import phonemizer
|
| 5 |
+
import librosa
|
| 6 |
+
|
| 7 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 8 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 9 |
+
|
| 10 |
+
waveform, sample_rate = librosa.load('harvard.wav', sr=16000) # Downsample 44.1kHz to 8kHz
|
| 11 |
+
|
| 12 |
+
input_values = processor(waveform, sampling_rate=sample_rate, return_tensors="pt").input_values
|
| 13 |
+
|
| 14 |
+
with torch.no_grad():
|
| 15 |
+
logits = model(input_values).logits
|
| 16 |
+
|
| 17 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 18 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 19 |
+
|
| 20 |
+
def showTranscription(transcription):
|
| 21 |
+
return transcription
|
| 22 |
+
|
| 23 |
+
iface = gr.Interface(fn=showTranscription, inputs="text", outputs="text")
|
| 24 |
+
iface.launch()
|
.history/app_20230718133128.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 3 |
+
import torch
|
| 4 |
+
import phonemizer
|
| 5 |
+
import librosa
|
| 6 |
+
|
| 7 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 8 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 9 |
+
|
| 10 |
+
waveform, sample_rate = librosa.load('harvard.wav', sr=16000) # Downsample 44.1kHz to 8kHz
|
| 11 |
+
|
| 12 |
+
input_values = processor(waveform, sampling_rate=sample_rate, return_tensors="pt").input_values
|
| 13 |
+
|
| 14 |
+
with torch.no_grad():
|
| 15 |
+
logits = model(input_values).logits
|
| 16 |
+
|
| 17 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 18 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 19 |
+
|
| 20 |
+
def showTranscription(transcription):
|
| 21 |
+
return transcription
|
| 22 |
+
|
| 23 |
+
iface = gr.Interface(fn=showTranscription, inputs="text", outputs="text")
|
| 24 |
+
iface.launch()
|
.history/app_20230718133340.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 3 |
+
import torch
|
| 4 |
+
import phonemizer
|
| 5 |
+
import librosa
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 10 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 11 |
+
|
| 12 |
+
waveform, sample_rate = librosa.load(
|
| 13 |
+
"harvard.wav", sr=16000
|
| 14 |
+
) # Downsample 44.1kHz to 8kHz
|
| 15 |
+
|
| 16 |
+
input_values = processor(
|
| 17 |
+
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
| 18 |
+
).input_values
|
| 19 |
+
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
logits = model(input_values).logits
|
| 22 |
+
|
| 23 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 24 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def showTranscription(transcription):
|
| 28 |
+
return transcription
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
iface = gr.Interface(fn=showTranscription, inputs="text", outputs="text")
|
| 32 |
+
iface.launch()
|
.history/app_20230718133558.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 3 |
+
import torch
|
| 4 |
+
import phonemizer
|
| 5 |
+
import librosa
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def lark(audioAsB64):
|
| 10 |
+
with open("audio.wav", "wb") as preWaveform:
|
| 11 |
+
preWaveform.write(base64.b64encode())
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 15 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 16 |
+
|
| 17 |
+
waveform, sample_rate = librosa.load(
|
| 18 |
+
"harvard.wav", sr=16000
|
| 19 |
+
) # Downsample 44.1kHz to 8kHz
|
| 20 |
+
|
| 21 |
+
input_values = processor(
|
| 22 |
+
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
| 23 |
+
).input_values
|
| 24 |
+
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
logits = model(input_values).logits
|
| 27 |
+
|
| 28 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 29 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
iface = gr.Interface(fn=lark, inputs="text", outputs="text")
|
| 33 |
+
iface.launch()
|
.history/app_20230718133701.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 3 |
+
import torch
|
| 4 |
+
import phonemizer
|
| 5 |
+
import librosa
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def lark(audioAsB64):
|
| 10 |
+
# convert b64 audio to wav
|
| 11 |
+
with open("audio.wav", "wb") as preWaveform:
|
| 12 |
+
preWaveform.write(base64.b64encode())
|
| 13 |
+
|
| 14 |
+
# processing
|
| 15 |
+
processor = Wav2Vec2Processor.from_pretrained(
|
| 16 |
+
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
| 17 |
+
)
|
| 18 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 19 |
+
|
| 20 |
+
waveform, sample_rate = librosa.load(
|
| 21 |
+
"harvard.wav", sr=16000
|
| 22 |
+
) # Downsample 44.1kHz to 8kHz
|
| 23 |
+
|
| 24 |
+
input_values = processor(
|
| 25 |
+
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
| 26 |
+
).input_values
|
| 27 |
+
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
logits = model(input_values).logits
|
| 30 |
+
|
| 31 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 32 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
iface = gr.Interface(fn=lark, inputs="text", outputs="text")
|
| 36 |
+
iface.launch()
|
.history/app_20230718133728.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 3 |
+
import torch
|
| 4 |
+
import phonemizer
|
| 5 |
+
import librosa
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def lark(audioAsB64):
|
| 10 |
+
# convert b64 audio to wav
|
| 11 |
+
with open("audio.wav", "wb") as preWaveform:
|
| 12 |
+
preWaveform.write(base64.b64encode())
|
| 13 |
+
|
| 14 |
+
# processing
|
| 15 |
+
processor = Wav2Vec2Processor.from_pretrained(
|
| 16 |
+
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
| 17 |
+
)
|
| 18 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 19 |
+
|
| 20 |
+
waveform, sample_rate = librosa.load(
|
| 21 |
+
"harvard.wav", sr=16000
|
| 22 |
+
) # Downsample 44.1kHz to 8kHz
|
| 23 |
+
|
| 24 |
+
input_values = processor(
|
| 25 |
+
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
| 26 |
+
).input_values
|
| 27 |
+
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
logits = model(input_values).logits
|
| 30 |
+
|
| 31 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 32 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 33 |
+
|
| 34 |
+
return transcription
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
iface = gr.Interface(fn=lark, inputs="text", outputs="text")
|
| 38 |
+
iface.launch()
|
.history/app_20230718134339.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 3 |
+
import torch
|
| 4 |
+
import phonemizer
|
| 5 |
+
import librosa
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def lark(audioAsB64):
|
| 10 |
+
# convert b64 audio to wav
|
| 11 |
+
with open("audio.wav", "wb") as preWaveform:
|
| 12 |
+
preWaveform.write(base64.b64encode())
|
| 13 |
+
|
| 14 |
+
# processing
|
| 15 |
+
processor = Wav2Vec2Processor.from_pretrained(
|
| 16 |
+
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
| 17 |
+
)
|
| 18 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 19 |
+
|
| 20 |
+
waveform, sample_rate = librosa.load(
|
| 21 |
+
"harvard.wav", sr=16000
|
| 22 |
+
) # Downsample 44.1kHz to 8kHz
|
| 23 |
+
|
| 24 |
+
input_values = processor(
|
| 25 |
+
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
| 26 |
+
).input_values
|
| 27 |
+
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
logits = model(input_values).logits
|
| 30 |
+
|
| 31 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 32 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 33 |
+
|
| 34 |
+
return transcription
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
iface = gr.Interface(fn=lark, inputs="text", outputs="text")
|
| 38 |
+
iface.launch()
|
.history/packages_20230718132731.txt
ADDED
|
File without changes
|
.history/packages_20230718132746.txt
ADDED
|
File without changes
|
.history/packages_20230718132842.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
espeak
|
.history/requirements_20230718132726.txt
ADDED
|
File without changes
|
.history/requirements_20230718132835.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
phonemizer
|
| 2 |
+
librosa
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
.history/requirements_20230718133331.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
phonemizer
|
| 2 |
+
librosa
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
base64
|
.history/requirements_20230718134813.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
phonemizer
|
| 2 |
+
librosa
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
.history/requirements_20230718134828.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
phonemizer
|
| 2 |
+
librosa
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
.vscode/settings.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[python]": {
|
| 3 |
+
"editor.defaultFormatter": "ms-python.black-formatter"
|
| 4 |
+
},
|
| 5 |
+
"python.formatting.provider": "none"
|
| 6 |
+
}
|
requirements.txt
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
phonemizer
|
| 2 |
librosa
|
| 3 |
transformers
|
| 4 |
-
torch
|
| 5 |
-
base64
|
|
|
|
| 1 |
phonemizer
|
| 2 |
librosa
|
| 3 |
transformers
|
| 4 |
+
torch
|
|
|