import gradio as gr import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences import pickle import re # Load model and tokenizer model = load_model("best_GRU_tuning_model.h5") with open("my_tokenizer.pkl","rb") as f: tokenizer = pickle.load(f) def preprocess_text(text): text = text.lower() text = re.sub(r'[^a-zA-Z\s]', '', text).strip() return text def predict_sentiment(raw_text): cleaned = preprocess_text(raw_text) seq = tokenizer.texts_to_sequences([cleaned]) padded_seq = pad_sequences(seq, maxlen=200) probs = model.predict(padded_seq) predicted_class = np.argmax(probs, axis=1)[0] rating = predicted_class + 1 return f"Predicted rating: {rating} (probabilities={probs[0]})" demo = gr.Interface(fn=predict_sentiment, inputs="text", outputs="label") demo.launch()