File size: 7,889 Bytes
ca2c89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import matplotlib.pyplot as plt
import seaborn as sns

def apply_custom_css():
    """Load custom CSS for the Flask interface"""
    css_file_path = "static/css/style.css"
    try:
        with open(css_file_path, "r") as f:
            return f.read()
    except Exception as e:
        print(f"Warning: Could not load custom CSS: {e}")
        return ""

def setup_mpl_style():
    """Setup matplotlib style for consistent visualizations"""
    try:
        plt.style.use('seaborn-v0_8-whitegrid')
        sns.set_style("whitegrid")
    except:
        # Fallback if seaborn style is not available
        plt.style.use('default')
    
    # Configure matplotlib for better visuals
    plt.rcParams['figure.figsize'] = (10, 6)
    plt.rcParams['axes.labelsize'] = 12
    plt.rcParams['axes.titlesize'] = 14
    plt.rcParams['xtick.labelsize'] = 10
    plt.rcParams['ytick.labelsize'] = 10
    plt.rcParams['legend.fontsize'] = 10
    plt.rcParams['axes.spines.top'] = False
    plt.rcParams['axes.spines.right'] = False

def create_bar_chart(labels, values, title, xlabel, ylabel, color='#1976D2'):
    """Create a matplotlib bar chart"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(10, 6))
    bars = ax.bar(labels, values, color=color)
    
    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    
    return fig

def create_horizontal_bar_chart(labels, values, title, xlabel, ylabel, color='#1976D2'):
    """Create a matplotlib horizontal bar chart"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(10, 6))
    bars = ax.barh(labels, values, color=color)
    
    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.invert_yaxis()  # To have the highest value at the top
    plt.tight_layout()
    
    return fig

def create_pie_chart(labels, values, title, colors=None):
    """Create a matplotlib pie chart"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(8, 8))
    
    if colors is None:
        colors = ['#1976D2', '#4CAF50', '#FF9800', '#F44336', '#9C27B0', '#00BCD4', '#FFC107', '#795548']
    
    wedges, texts, autotexts = ax.pie(values, labels=labels, autopct='%1.1f%%', colors=colors)
    ax.set_title(title)
    
    # Improve text readability
    for autotext in autotexts:
        autotext.set_color('white')
        autotext.set_fontweight('bold')
    
    plt.tight_layout()
    return fig

def create_line_chart(x_values, y_values, title, xlabel, ylabel, color='#1976D2'):
    """Create a matplotlib line chart"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(10, 6))
    ax.plot(x_values, y_values, color=color, linewidth=2, marker='o')
    
    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.grid(True, alpha=0.3)
    plt.tight_layout()
    
    return fig

def create_scatter_plot(x_values, y_values, title, xlabel, ylabel, color='#1976D2'):
    """Create a matplotlib scatter plot"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(10, 6))
    ax.scatter(x_values, y_values, color=color, alpha=0.6, s=50)
    
    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.grid(True, alpha=0.3)
    plt.tight_layout()
    
    return fig

def create_heatmap(data, title, xlabel, ylabel, cmap='YlGnBu'):
    """Create a matplotlib heatmap"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(10, 8))
    
    im = ax.imshow(data, cmap=cmap, aspect='auto')
    
    # Add colorbar
    cbar = ax.figure.colorbar(im, ax=ax)
    cbar.ax.set_ylabel('Value', rotation=-90, va="bottom")
    
    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    
    plt.tight_layout()
    return fig

def create_word_cloud_placeholder(text, title="Word Cloud"):
    """Create a placeholder for word cloud visualization"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(10, 6))
    
    # Create a simple text visualization as placeholder
    ax.text(0.5, 0.5, f"Word Cloud: {title}\n\n{text[:100]}...", 
            ha='center', va='center', fontsize=12, 
            bbox=dict(boxstyle="round,pad=0.3", facecolor="lightblue", alpha=0.7))
    
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.axis('off')
    ax.set_title(title)
    
    plt.tight_layout()
    return fig

def create_network_graph(edges, nodes, title="Network Graph"):
    """Create a network graph visualization"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(12, 8))
    
    # Simple network visualization
    if edges and nodes:
        # Extract node positions (simplified)
        pos = {}
        for i, node in enumerate(nodes):
            angle = 2 * 3.14159 * i / len(nodes)
            pos[node] = (0.5 + 0.3 * np.cos(angle), 0.5 + 0.3 * np.sin(angle))
        
        # Draw edges
        for edge in edges:
            if len(edge) >= 2:
                x1, y1 = pos.get(edge[0], (0, 0))
                x2, y2 = pos.get(edge[1], (0, 0))
                ax.plot([x1, x2], [y1, y2], 'k-', alpha=0.5, linewidth=1)
        
        # Draw nodes
        for node, (x, y) in pos.items():
            ax.scatter(x, y, s=200, c='lightblue', edgecolors='black', linewidth=2)
            ax.text(x, y, str(node), ha='center', va='center', fontsize=8)
    
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.axis('off')
    ax.set_title(title)
    
    plt.tight_layout()
    return fig

def create_gauge_chart(value, max_value=1.0, title="Gauge Chart"):
    """Create a gauge chart visualization"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(projection='polar'))
    
    # Create gauge
    theta = np.linspace(0, np.pi, 100)
    r = np.ones_like(theta)
    
    # Color based on value
    if value / max_value > 0.7:
        color = '#4CAF50'  # Green
    elif value / max_value > 0.4:
        color = '#FF9800'  # Orange
    else:
        color = '#F44336'  # Red
    
    ax.fill_between(theta, 0, r, alpha=0.3, color=color)
    ax.plot(theta, r, color=color, linewidth=3)
    
    # Add value indicator
    indicator_theta = np.pi * (1 - value / max_value)
    ax.plot([indicator_theta, indicator_theta], [0, 1], color='black', linewidth=4)
    
    ax.set_ylim(0, 1)
    ax.set_title(title, pad=20)
    ax.set_xticks([])
    ax.set_yticks([])
    
    # Add value text
    ax.text(0, 0, f'{value:.2f}', ha='center', va='center', fontsize=20, fontweight='bold')
    
    plt.tight_layout()
    return fig

def create_comparison_chart(categories, values1, values2, title, xlabel, ylabel, 

                          label1="Series 1", label2="Series 2", color1='#1976D2', color2='#4CAF50'):
    """Create a comparison bar chart"""
    setup_mpl_style()
    fig, ax = plt.subplots(figsize=(12, 6))
    
    x = np.arange(len(categories))
    width = 0.35
    
    bars1 = ax.bar(x - width/2, values1, width, label=label1, color=color1)
    bars2 = ax.bar(x + width/2, values2, width, label=label2, color=color2)
    
    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xticks(x)
    ax.set_xticklabels(categories, rotation=45, ha='right')
    ax.legend()
    
    # Add value labels on bars
    for bars in [bars1, bars2]:
        for bar in bars:
            height = bar.get_height()
            ax.annotate(f'{height:.1f}',
                       xy=(bar.get_x() + bar.get_width() / 2, height),
                       xytext=(0, 3),  # 3 points vertical offset
                       textcoords="offset points",
                       ha='center', va='bottom')
    
    plt.tight_layout()
    return fig