Spaces:
Running
on
Zero
Running
on
Zero
| import json | |
| import random | |
| import requests | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| from diffusers import DiffusionPipeline, LCMScheduler | |
| from PIL import Image | |
| # Load the JSON data | |
| with open("sdxl_lora.json", "r") as file: | |
| data = json.load(file) | |
| sdxl_loras_raw = sorted(data, key=lambda x: x["likes"], reverse=True) | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
| pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16") | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.to(device=DEVICE, dtype=torch.float16) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def update_selection(selected_state: gr.SelectData, gr_sdxl_loras): | |
| lora_id = gr_sdxl_loras[selected_state.index]["repo"] | |
| trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"] | |
| return lora_id, trigger_word | |
| def load_lora_for_style(style_repo): | |
| pipe.unload_lora_weights() | |
| pipe.load_lora_weights(style_repo, adapter_name="lora") | |
| def get_image(image_data): | |
| if isinstance(image_data, str): | |
| return image_data | |
| if isinstance(image_data, dict): | |
| local_path = image_data.get('local_path') | |
| hf_url = image_data.get('hf_url') | |
| else: | |
| return None # or a default image path | |
| try: | |
| return local_path # Return the local path string | |
| except: | |
| try: | |
| response = requests.get(hf_url) | |
| if response.status_code == 200: | |
| with open(local_path, 'wb') as f: | |
| f.write(response.content) | |
| return local_path # Return the local path string | |
| except Exception as e: | |
| print(f"Failed to load image: {e}") | |
| return None # or a default image path | |
| def infer( | |
| pre_prompt, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| num_inference_steps, | |
| negative_prompt, | |
| guidance_scale, | |
| user_lora_selector, | |
| user_lora_weight, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| load_lora_for_style(user_lora_selector) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| if pre_prompt != "": | |
| prompt = f"{pre_prompt} {prompt}" | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| ).images[0] | |
| return image | |
| css = """ | |
| body { | |
| background-color: #1a1a1a; | |
| color: #ffffff; | |
| } | |
| .container { | |
| max-width: 900px; | |
| margin: auto; | |
| padding: 20px; | |
| } | |
| h1, h2 { | |
| color: #4CAF50; | |
| text-align: center; | |
| } | |
| .gallery { | |
| display: flex; | |
| flex-wrap: wrap; | |
| justify-content: center; | |
| } | |
| .gallery img { | |
| margin: 10px; | |
| border-radius: 10px; | |
| transition: transform 0.3s ease; | |
| } | |
| .gallery img:hover { | |
| transform: scale(1.05); | |
| } | |
| .gradio-slider input[type="range"] { | |
| background-color: #4CAF50; | |
| } | |
| .gradio-button { | |
| background-color: #4CAF50 !important; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown( | |
| """ | |
| # ⚡ FlashDiffusion: Araminta K's FlashLoRA Showcase ⚡ | |
| This interactive demo showcases [Araminta K's models](https://huggingface.co/alvdansen) using [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) technology. | |
| ## Acknowledgments | |
| - Original Flash Diffusion technology by the Jasper AI team | |
| - Based on the paper: [Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) by Clément Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin | |
| - Models showcased here are created by Araminta K at Alvdansen Labs | |
| Explore the power of FlashLoRA with Araminta K's unique artistic styles! | |
| """ | |
| ) | |
| gr_sdxl_loras = gr.State(value=sdxl_loras_raw) | |
| gr_lora_id = gr.State(value="") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| gallery = gr.Gallery( | |
| value=[(img, title) for img, title in | |
| ((get_image(item["image"]), item["title"]) for item in sdxl_loras_raw) | |
| if img is not None], | |
| label="SDXL LoRA Gallery", | |
| show_label=False, | |
| elem_id="gallery", | |
| columns=3, | |
| height=600, | |
| ) | |
| user_lora_selector = gr.Textbox( | |
| label="Current Selected LoRA", | |
| interactive=False, | |
| ) | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt", | |
| lines=3, | |
| ) | |
| with gr.Row(): | |
| run_button = gr.Button("Run", variant="primary") | |
| clear_button = gr.Button("Clear") | |
| result = gr.Image(label="Result", height=512) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| pre_prompt = gr.Textbox( | |
| label="Pre-Prompt", | |
| placeholder="Pre Prompt from the LoRA config", | |
| lines=2, | |
| ) | |
| with gr.Row(): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=4, | |
| maximum=8, | |
| step=1, | |
| value=4, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=6, | |
| step=0.5, | |
| value=1, | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| placeholder="Enter a negative Prompt", | |
| lines=2, | |
| ) | |
| gr.on( | |
| [run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| pre_prompt, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| num_inference_steps, | |
| negative_prompt, | |
| guidance_scale, | |
| user_lora_selector, | |
| gr.Slider(label="Selected LoRA Weight", minimum=0.5, maximum=3, step=0.1, value=1), | |
| ], | |
| outputs=[result], | |
| ) | |
| clear_button.click(lambda: "", outputs=[prompt, result]) | |
| gallery.select( | |
| fn=update_selection, | |
| inputs=[gr_sdxl_loras], | |
| outputs=[user_lora_selector, pre_prompt], | |
| ) | |
| gr.Markdown( | |
| """ | |
| ## Unleash Your Creativity! | |
| This showcase brings together the speed of Flash Diffusion and the artistic flair of Araminta K's models. | |
| Craft your prompts, adjust the settings, and watch as AI brings your ideas to life in stunning detail. | |
| Remember to use this tool ethically and respect copyright and individual privacy. | |
| Enjoy exploring these unique artistic styles! | |
| """ | |
| ) | |
| demo.queue().launch() |