import torch model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() import requests import PIL from torchvision import transforms # Download human-readable labels for ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(image_filepath): PIL_image = PIL.Image.open(image_filepath).convert('RGB') transformations = transforms.Compose([ transforms.Resize(size = (224,224)), transforms.ToTensor(), ]) image_tensors = transformations(PIL_image).unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(model(image_tensors)[0], dim=0) confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences import gradio as gr with gr.Blocks(title="Image Classification for 1000 Objects", css=".gradio-container {background:#FFD1DC;}") as demo: gr.HTML("""
Image Classification for 1000 Objects
""") with gr.Row(): input_image = gr.Image(type="filepath", image_mode="L") output_label = gr.Label(label="Probabilities", num_top_classes=3) send_btn = gr.Button("Infer") send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label) with gr.Row(): gr.Examples(['./lion.jpg'] , label='Sample images : Lion', inputs=input_image) gr.Examples(['./cheetah.jpg'], label='Cheetah' , inputs=input_image) gr.Examples(['./eagle.jpg'], label='Eagle' , inputs=input_image) gr.Examples(['./indigobird.jpg'], label='Indigo Bird' , inputs=input_image) gr.Examples(['./aircraftcarrier.jpg'], label='Aircraft Carrier' , inputs=input_image) gr.Examples(['./acousticguitar.jpg'], label='Acoustic Guitar' , inputs=input_image) # gr.Interface(fn=predict, # inputs=gr.Image(type="pil"), # outputs=gr.Label(num_top_classes=3), # examples=["lion.jpg", "cheetah.jpg"]).launch() demo.launch(debug=True, share=True)