Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,28 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from ultralytics import YOLO
|
| 3 |
from PIL import Image
|
|
|
|
| 4 |
|
| 5 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def analyze_xray(image):
|
| 8 |
if image is None:
|
| 9 |
return None, "Please upload an X-ray image"
|
|
|
|
| 10 |
results = model.predict(image, conf=0.25)
|
| 11 |
annotated = results[0].plot()
|
| 12 |
annotated_pil = Image.fromarray(annotated)
|
| 13 |
detections = results[0].boxes
|
|
|
|
| 14 |
if len(detections) == 0:
|
| 15 |
report = "✅ No significant pathologies detected"
|
| 16 |
else:
|
|
@@ -20,20 +32,38 @@ def analyze_xray(image):
|
|
| 20 |
if cls_name not in class_counts:
|
| 21 |
class_counts[cls_name] = 0
|
| 22 |
class_counts[cls_name] += 1
|
|
|
|
| 23 |
report = f"**Total Findings:** {len(detections)}\n\n"
|
| 24 |
for cls_name, count in class_counts.items():
|
| 25 |
emoji = {"Cavity": "⚠️", "Fillings": "✅", "Implant": "🦷", "Impacted Tooth": "⚠️"}.get(cls_name, "ℹ️")
|
| 26 |
report += f"{emoji} **{cls_name}**: {count} detected\n"
|
|
|
|
| 27 |
return annotated_pil, report
|
| 28 |
|
| 29 |
demo = gr.Interface(
|
| 30 |
fn=analyze_xray,
|
| 31 |
inputs=gr.Image(type="pil", label="Upload Dental X-ray"),
|
| 32 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
| 33 |
title="🦷 Clinical Dental Pathology Detector",
|
| 34 |
-
description="Upload dental X-ray to detect cavities, fillings, implants, and impacted teeth. **98.9% mAP@50**"
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
| 38 |
|
|
|
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from ultralytics import YOLO
|
| 3 |
from PIL import Image
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
|
| 6 |
+
# Download model from Hugging Face
|
| 7 |
+
print("Downloading model from Hugging Face...")
|
| 8 |
+
model_path = hf_hub_download(
|
| 9 |
+
repo_id="ajeetsraina/clinical-dental-pathology-detector",
|
| 10 |
+
filename="models/dental_pathology_detector.pt"
|
| 11 |
+
)
|
| 12 |
+
print(f"Model downloaded to: {model_path}")
|
| 13 |
+
|
| 14 |
+
# Load model
|
| 15 |
+
model = YOLO(model_path)
|
| 16 |
|
| 17 |
def analyze_xray(image):
|
| 18 |
if image is None:
|
| 19 |
return None, "Please upload an X-ray image"
|
| 20 |
+
|
| 21 |
results = model.predict(image, conf=0.25)
|
| 22 |
annotated = results[0].plot()
|
| 23 |
annotated_pil = Image.fromarray(annotated)
|
| 24 |
detections = results[0].boxes
|
| 25 |
+
|
| 26 |
if len(detections) == 0:
|
| 27 |
report = "✅ No significant pathologies detected"
|
| 28 |
else:
|
|
|
|
| 32 |
if cls_name not in class_counts:
|
| 33 |
class_counts[cls_name] = 0
|
| 34 |
class_counts[cls_name] += 1
|
| 35 |
+
|
| 36 |
report = f"**Total Findings:** {len(detections)}\n\n"
|
| 37 |
for cls_name, count in class_counts.items():
|
| 38 |
emoji = {"Cavity": "⚠️", "Fillings": "✅", "Implant": "🦷", "Impacted Tooth": "⚠️"}.get(cls_name, "ℹ️")
|
| 39 |
report += f"{emoji} **{cls_name}**: {count} detected\n"
|
| 40 |
+
|
| 41 |
return annotated_pil, report
|
| 42 |
|
| 43 |
demo = gr.Interface(
|
| 44 |
fn=analyze_xray,
|
| 45 |
inputs=gr.Image(type="pil", label="Upload Dental X-ray"),
|
| 46 |
+
outputs=[
|
| 47 |
+
gr.Image(type="pil", label="Analyzed X-ray"),
|
| 48 |
+
gr.Markdown(label="Clinical Report")
|
| 49 |
+
],
|
| 50 |
title="🦷 Clinical Dental Pathology Detector",
|
| 51 |
+
description="Upload dental X-ray to detect cavities, fillings, implants, and impacted teeth. **98.9% mAP@50 accuracy**",
|
| 52 |
+
article="Model: [ajeetsraina/clinical-dental-pathology-detector](https://huggingface.co/ajeetsraina/clinical-dental-pathology-detector)"
|
| 53 |
)
|
| 54 |
|
| 55 |
demo.launch()
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
---
|
| 59 |
|
| 60 |
+
## **📝 Update requirements.txt**
|
| 61 |
|
| 62 |
+
Also update your `requirements.txt`:
|
| 63 |
+
```
|
| 64 |
+
gradio
|
| 65 |
+
ultralytics
|
| 66 |
+
pillow
|
| 67 |
+
torch
|
| 68 |
+
opencv-python-headless
|
| 69 |
+
huggingface_hub
|