Spaces:
Running
Running
Initialize README
Browse files
README.md
CHANGED
|
@@ -1,12 +1,116 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: RAG Benchmark Leaderboard
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.4.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# RAG Benchmark Leaderboard
|
| 13 |
+
|
| 14 |
+
An interactive leaderboard for comparing and visualizing the performance of RAG (Retrieval-Augmented Generation) systems.
|
| 15 |
+
|
| 16 |
+
## Features
|
| 17 |
+
|
| 18 |
+
- **Version Comparison**: Compare model performances across different versions of the benchmark dataset
|
| 19 |
+
- **Interactive Radar Charts**: Visualize generative and retrieval metrics
|
| 20 |
+
- **Customizable Views**: Filter and sort models based on different criteria
|
| 21 |
+
- **Easy Submission**: Simple API for submitting your model results
|
| 22 |
+
|
| 23 |
+
## Installation
|
| 24 |
+
|
| 25 |
+
```bash
|
| 26 |
+
pip install -r requirements.txt
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
## Running the Leaderboard
|
| 30 |
+
|
| 31 |
+
```bash
|
| 32 |
+
cd leaderboard
|
| 33 |
+
python app.py
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
This will start a Gradio server, and you can access the leaderboard in your browser at http://localhost:7860.
|
| 37 |
+
|
| 38 |
+
## Submitting Results
|
| 39 |
+
|
| 40 |
+
To submit your results to the leaderboard, use the provided API:
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
from rag_benchmark import RAGBenchmark
|
| 44 |
+
|
| 45 |
+
# Initialize the benchmark
|
| 46 |
+
benchmark = RAGBenchmark(version="2.0") # Use the latest version
|
| 47 |
+
|
| 48 |
+
# Run evaluation
|
| 49 |
+
results = benchmark.evaluate(
|
| 50 |
+
model_name="Your Model Name",
|
| 51 |
+
embedding_model="your-embedding-model",
|
| 52 |
+
retriever_type="dense", # Options: dense, sparse, hybrid
|
| 53 |
+
retrieval_config={"top_k": 3}
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Submit results
|
| 57 |
+
benchmark.submit_results(results)
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Data Format
|
| 61 |
+
|
| 62 |
+
The results.json file has the following structure:
|
| 63 |
+
|
| 64 |
+
```json
|
| 65 |
+
{
|
| 66 |
+
"items": {
|
| 67 |
+
"1.0": { // Dataset version
|
| 68 |
+
"model1": { // Submission ID
|
| 69 |
+
"model_name": "Model Name",
|
| 70 |
+
"timestamp": "2024-03-20T12:00:00",
|
| 71 |
+
"config": {
|
| 72 |
+
"embedding_model": "embedding-model-name",
|
| 73 |
+
"retriever_type": "dense",
|
| 74 |
+
"retrieval_config": {
|
| 75 |
+
"top_k": 3
|
| 76 |
+
}
|
| 77 |
+
},
|
| 78 |
+
"metrics": {
|
| 79 |
+
"retrieval": {
|
| 80 |
+
"hit_rate": 0.82,
|
| 81 |
+
"mrr": 0.65,
|
| 82 |
+
"precision": 0.78
|
| 83 |
+
},
|
| 84 |
+
"generation": {
|
| 85 |
+
"rouge1": 0.72,
|
| 86 |
+
"rouge2": 0.55,
|
| 87 |
+
"rougeL": 0.68
|
| 88 |
+
}
|
| 89 |
+
}
|
| 90 |
+
}
|
| 91 |
+
}
|
| 92 |
+
},
|
| 93 |
+
"last_version": "2.0",
|
| 94 |
+
"n_questions": "1000"
|
| 95 |
+
}
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
## License
|
| 99 |
+
|
| 100 |
+
MIT
|
| 101 |
+
|
| 102 |
+
# RAG Evaluation Leaderboard
|
| 103 |
+
|
| 104 |
+
This leaderboard tracks different RAG (Retrieval-Augmented Generation) implementations and their performance metrics.
|
| 105 |
+
|
| 106 |
+
## Metrics Tracked
|
| 107 |
+
|
| 108 |
+
### Retrieval Metrics
|
| 109 |
+
- Hit Rate: Proportion of relevant documents retrieved
|
| 110 |
+
- MRR (Mean Reciprocal Rank): Position of first relevant document
|
| 111 |
+
|
| 112 |
+
### Generation Metrics
|
| 113 |
+
- ROUGE-1: Unigram overlap
|
| 114 |
+
- ROUGE-2: Bigram overlap
|
| 115 |
+
- ROUGE-L: Longest common subsequence
|
| 116 |
+
|